Cargando…
How has external knowledge contributed to lithium-ion batteries for the energy transition?
Innovation in clean-energy technologies is central toward a net-zero energy system. One key determinant of technological innovation is the integration of external knowledge, i.e., knowledge spillovers. However, extant work does not explain how individual spillovers come about: the mechanisms and ena...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814146/ https://www.ncbi.nlm.nih.gov/pubmed/33506185 http://dx.doi.org/10.1016/j.isci.2020.101995 |
Sumario: | Innovation in clean-energy technologies is central toward a net-zero energy system. One key determinant of technological innovation is the integration of external knowledge, i.e., knowledge spillovers. However, extant work does not explain how individual spillovers come about: the mechanisms and enablers of these spillovers. We ask how knowledge from other technologies, sectors, or scientific disciplines is integrated into the innovation process in an important technology for a net-zero future: lithium-ion batteries (LIBs), based on a qualitative case study using extant literature and an elite interview campaign with key inventors in the LIB field and R&D/industry experts. We identify the breakthrough innovations in LIBs, discuss the extent to which breakthrough innovations—plus a few others—have resulted from spillovers, and identify different mechanisms and enablers underlying these spillovers, which can be leveraged by policymakers and R&D managers who are interested in facilitating spillovers in LIBs and other clean-energy technologies. |
---|