Cargando…

Circular RNA AKT3 governs malignant behaviors of esophageal cancer cells by sponging miR-17-5p

BACKGROUND: Recent studies have demonstrated that circular RNA AKT3 (circAKT3) plays a crucial role in regulating the malignant phenotypes of tumor cells. However, the potential effects of circAKT3 on esophageal cancer have not been investigated. AIM: To illuminate the role of circAKT3 in malignant...

Descripción completa

Detalles Bibliográficos
Autores principales: Zang, Hong-Liang, Ji, Fu-Jian, Ju, Hai-Ying, Tian, Xiao-Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814369/
https://www.ncbi.nlm.nih.gov/pubmed/33519139
http://dx.doi.org/10.3748/wjg.v27.i3.240
Descripción
Sumario:BACKGROUND: Recent studies have demonstrated that circular RNA AKT3 (circAKT3) plays a crucial role in regulating the malignant phenotypes of tumor cells. However, the potential effects of circAKT3 on esophageal cancer have not been investigated. AIM: To illuminate the role of circAKT3 in malignant behaviors of esophageal cancer cells and its underlying mechanism. METHODS: Clinical samples were collected to detect the expression of circAKT3. The role of circAKT3 in proliferation, migration, invasion, and apoptosis of esophageal cancer cells was evaluated using Cell Counting Kit-8, wound healing assays, Transwell assays, and fluorescence analysis, respectively. The target of circAKT3 was screened and identified using an online database and luciferase reporter assay. A xenograft nude mouse model was established to investigate the role of circAKT3 in vivo. RESULTS: In vitro assays showed that proliferative, migratory, and invasive capacities of esophageal cancer cells were significantly enhanced by circAKT3 overexpression. Furthermore, miR-17-5p was screened as the target of circAKT3, and miR-17-5p antagonized the effects of circAKT3 on esophageal cancer cells. Moreover, we identified RHOC and STAT3 as the direct target molecules of miR-17-5p, and circAKT3 facilitated expression of RHOC and STAT3 by inhibiting miR-17-5p. In vivo assays showed circAKT3 knockdown inhibited growth of esophageal cancer. CONCLUSION: CircAKT3 contributed to the malignant behaviors of esophageal cancer in vitro and in vivo by sponging miR-17-5p thus providing a potential target for treatment of esophageal cancer.