Cargando…
PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks
Task-trained artificial recurrent neural networks (RNNs) provide a computational modeling framework of increasing interest and application in computational, systems, and cognitive neuroscience. RNNs can be trained, using deep-learning methods, to perform cognitive tasks used in animal and human expe...
Autores principales: | Ehrlich, Daniel B., Stone, Jasmine T., Brandfonbrener, David, Atanasov, Alexander, Murray, John D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814477/ https://www.ncbi.nlm.nih.gov/pubmed/33328247 http://dx.doi.org/10.1523/ENEURO.0427-20.2020 |
Ejemplares similares
-
Timed Sequence Task: A New Paradigm to Study Motor Learning and Flexibility in Mice
por: Urushadze, Anna, et al.
Publicado: (2023) -
DeepCINAC: A Deep-Learning-Based Python Toolbox for Inferring Calcium Imaging Neuronal Activity Based on Movie Visualization
por: Denis, Julien, et al.
Publicado: (2020) -
BrainWAVE: A Flexible Method for Noninvasive Stimulation of Brain Rhythms across Species
por: Attokaren, Matthew K., et al.
Publicado: (2023) -
FASTMAP: Open-Source Flexible Atlas Segmentation Tool for Multi-Area Processing of Biological Images
por: Terstege, Dylan J., et al.
Publicado: (2022) -
High-Sensitivity Intrinsic Optical Signal Imaging Through Flexible, Low-Cost Adaptations of an Upright Microscope
por: Vasquez, Brenda, et al.
Publicado: (2023)