Cargando…
Mechanical Stress Affects Circadian Rhythm in Skeletal Muscle (C2C12 Myoblasts) by Reducing Per/Cry Gene Expression and Increasing Bmal1 Gene Expression
BACKGROUND: Circadian rhythm can modulate normal activity of humans in adapting to daily environment changes. Mechanical stress loading affects skeletal muscle development and bio-functions. This study aimed to investigate the effects of mechanical stress loading on circadian rhythm in skeletal musc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814509/ https://www.ncbi.nlm.nih.gov/pubmed/33444293 http://dx.doi.org/10.12659/MSM.928359 |
Sumario: | BACKGROUND: Circadian rhythm can modulate normal activity of humans in adapting to daily environment changes. Mechanical stress loading affects skeletal muscle development and bio-functions. This study aimed to investigate the effects of mechanical stress loading on circadian rhythm in skeletal muscle (C2C12 cells) and to explore the associated mechanism. MATERIAL/METHODS: C2C12 myoblasts were cultured and treated with mechanical stress loading. After mechanical stress loading for 6 h,12 h, and 24 h, we observed the C2C12 myoblasts and determined gene transcription and protein expression of Clock genes, including Clock, Bmal1, Per, and Cry using RT-PCR and western blot assay. RESULTS: Mechanical stress loading triggered C2C12 cells growing by force direction and enhanced the cell proliferation at 6 h, 12 h, and 24 h. Gene transcription and protein expression of the core Clock-associated molecules, Clock and Bmal1, increased from start of loading to 12 h, and decreased from 12 h to 24 h. Gene transcription and protein expression of core Clock-associated molecules, Cry and Per, decreased in the first 12 h (from 6 h to 12 h) and increased in the last 12 h (from 12 h to 24 h). CONCLUSIONS: Our study revealed that mechanical stress loading affected circadian rhythm in skeletal muscle (C2C12 myoblasts) through reducing Per/Cry and enhancing Clock/Bmal1 gene expression. This study provides insights for investigating circadian rhythm and associated bio-functions of humans. |
---|