Cargando…
MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
BACKGROUND: The increased availability and usage of modern medical imaging induced a strong need for automatic medical image segmentation. Still, current image segmentation platforms do not provide the required functionalities for plain setup of medical image segmentation pipelines. Already implemen...
Autores principales: | Müller, Dominik, Kramer, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814713/ https://www.ncbi.nlm.nih.gov/pubmed/33461500 http://dx.doi.org/10.1186/s12880-020-00543-7 |
Ejemplares similares
-
InstantDL: an easy-to-use deep learning pipeline for image segmentation and classification
por: Waibel, Dominik Jens Elias, et al.
Publicado: (2021) -
Intelligent fluorescence image analysis of giant unilamellar vesicles using convolutional neural network
por: Lee, Il-Hyung, et al.
Publicado: (2022) -
Spliceator: multi-species splice site prediction using convolutional neural networks
por: Scalzitti, Nicolas, et al.
Publicado: (2021) -
DMCNN: A Deep Multiscale Convolutional Neural Network Model for Medical Image Segmentation
por: Teng, Lin, et al.
Publicado: (2019) -
Deep learning and convolutional neural networks for medical imaging and clinical informatics
por: Lu, Le, et al.
Publicado: (2019)