Cargando…
MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors
Although genome-wide DNA methylomes have demonstrated their clinical value as reliable biomarkers for tumor detection, subtyping, and classification, their direct biological impacts at the individual gene level remain elusive. Here we present MethylationToActivity (M2A), a machine learning framework...
Autores principales: | Williams, Justin, Xu, Beisi, Putnam, Daniel, Thrasher, Andrew, Li, Chunliang, Yang, Jun, Chen, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814737/ https://www.ncbi.nlm.nih.gov/pubmed/33461601 http://dx.doi.org/10.1186/s13059-020-02220-y |
Ejemplares similares
-
MethylPurify: tumor purity deconvolution and differential methylation detection from single tumor DNA methylomes
por: Zheng, Xiaoqi, et al.
Publicado: (2014) -
Inferring regulatory element landscapes and transcription factor networks from cancer methylomes
por: Yao, Lijing, et al.
Publicado: (2015) -
Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing
por: Guo, Hongshan, et al.
Publicado: (2013) -
Simultaneous profiling of transcriptome and DNA methylome from a single cell
por: Hu, Youjin, et al.
Publicado: (2016) -
Methyl-SNP-seq reveals dual readouts of methylome and variome at molecule resolution while enabling target enrichment
por: Yan, Bo, et al.
Publicado: (2022)