Cargando…
Selectivity over coverage in de novo sequencing of IgGs
Although incredibly diverse in specificity, millions of unique Immunoglobulin G (IgG) molecules in the human antibody repertoire share most of their amino acid sequence. These constant parts of IgG do not yield any useful information in attempts to sequence antibodies de novo. Therefore, methods foc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814886/ https://www.ncbi.nlm.nih.gov/pubmed/33520151 http://dx.doi.org/10.1039/d0sc03438j |
_version_ | 1783638133950119936 |
---|---|
author | den Boer, Maurits A. Greisch, Jean-Francois Tamara, Sem Bondt, Albert Heck, Albert J. R. |
author_facet | den Boer, Maurits A. Greisch, Jean-Francois Tamara, Sem Bondt, Albert Heck, Albert J. R. |
author_sort | den Boer, Maurits A. |
collection | PubMed |
description | Although incredibly diverse in specificity, millions of unique Immunoglobulin G (IgG) molecules in the human antibody repertoire share most of their amino acid sequence. These constant parts of IgG do not yield any useful information in attempts to sequence antibodies de novo. Therefore, methods focusing solely on the variable regions and providing unambiguous sequence reads are strongly advantageous. We report a mass spectrometry-based method that uses electron capture dissociation (ECD) to provide straightforward-to-read sequence ladders for the variable parts of both the light and heavy chains, with a preference for the functionally important CDR3. We optimized this method on the therapeutic antibody Trastuzumab and demonstrate its applicability on two monoclonal quartets of the four IgG subclasses, IgG1, IgG2, IgG3 and IgG4. The method is based on proteolytically separating the variable F(ab′)(2) part from the conserved Fc part, whereafter the F(ab′)(2) portions are mass-analyzed and fragmented by ECD. Pure ECD, without additional collisional activation, leads to straightforward-to-read sequence tags covering the CDR3 of both the light and heavy chains. Using molecular modelling and structural analysis, we discuss and explain this selective fragmentation behavior and describe how structural features of the different IgG subclasses lead to distinct fragmentation patterns. Overall, we foresee that pure ECD on F(ab′)(2) or Fab molecules can become a valuable tool for the de novo sequencing of serum antibodies. |
format | Online Article Text |
id | pubmed-7814886 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-78148862021-01-29 Selectivity over coverage in de novo sequencing of IgGs den Boer, Maurits A. Greisch, Jean-Francois Tamara, Sem Bondt, Albert Heck, Albert J. R. Chem Sci Chemistry Although incredibly diverse in specificity, millions of unique Immunoglobulin G (IgG) molecules in the human antibody repertoire share most of their amino acid sequence. These constant parts of IgG do not yield any useful information in attempts to sequence antibodies de novo. Therefore, methods focusing solely on the variable regions and providing unambiguous sequence reads are strongly advantageous. We report a mass spectrometry-based method that uses electron capture dissociation (ECD) to provide straightforward-to-read sequence ladders for the variable parts of both the light and heavy chains, with a preference for the functionally important CDR3. We optimized this method on the therapeutic antibody Trastuzumab and demonstrate its applicability on two monoclonal quartets of the four IgG subclasses, IgG1, IgG2, IgG3 and IgG4. The method is based on proteolytically separating the variable F(ab′)(2) part from the conserved Fc part, whereafter the F(ab′)(2) portions are mass-analyzed and fragmented by ECD. Pure ECD, without additional collisional activation, leads to straightforward-to-read sequence tags covering the CDR3 of both the light and heavy chains. Using molecular modelling and structural analysis, we discuss and explain this selective fragmentation behavior and describe how structural features of the different IgG subclasses lead to distinct fragmentation patterns. Overall, we foresee that pure ECD on F(ab′)(2) or Fab molecules can become a valuable tool for the de novo sequencing of serum antibodies. Royal Society of Chemistry 2020-10-06 /pmc/articles/PMC7814886/ /pubmed/33520151 http://dx.doi.org/10.1039/d0sc03438j Text en This journal is © The Royal Society of Chemistry 2020 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry den Boer, Maurits A. Greisch, Jean-Francois Tamara, Sem Bondt, Albert Heck, Albert J. R. Selectivity over coverage in de novo sequencing of IgGs |
title | Selectivity over coverage in de novo sequencing of IgGs
|
title_full | Selectivity over coverage in de novo sequencing of IgGs
|
title_fullStr | Selectivity over coverage in de novo sequencing of IgGs
|
title_full_unstemmed | Selectivity over coverage in de novo sequencing of IgGs
|
title_short | Selectivity over coverage in de novo sequencing of IgGs
|
title_sort | selectivity over coverage in de novo sequencing of iggs |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814886/ https://www.ncbi.nlm.nih.gov/pubmed/33520151 http://dx.doi.org/10.1039/d0sc03438j |
work_keys_str_mv | AT denboermauritsa selectivityovercoverageindenovosequencingofiggs AT greischjeanfrancois selectivityovercoverageindenovosequencingofiggs AT tamarasem selectivityovercoverageindenovosequencingofiggs AT bondtalbert selectivityovercoverageindenovosequencingofiggs AT heckalbertjr selectivityovercoverageindenovosequencingofiggs |