Cargando…
Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks
Ultrasonic vocalizations (USVs) analysis is a well-recognized tool to investigate animal communication. It can be used for behavioral phenotyping of murine models of different disorders. The USVs are usually recorded with a microphone sensitive to ultrasound frequencies and they are analyzed by spec...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815145/ https://www.ncbi.nlm.nih.gov/pubmed/33465075 http://dx.doi.org/10.1371/journal.pone.0244636 |
_version_ | 1783638179326197760 |
---|---|
author | Premoli, Marika Baggi, Daniele Bianchetti, Marco Gnutti, Alessandro Bondaschi, Marco Mastinu, Andrea Migliorati, Pierangelo Signoroni, Alberto Leonardi, Riccardo Memo, Maurizio Bonini, Sara Anna |
author_facet | Premoli, Marika Baggi, Daniele Bianchetti, Marco Gnutti, Alessandro Bondaschi, Marco Mastinu, Andrea Migliorati, Pierangelo Signoroni, Alberto Leonardi, Riccardo Memo, Maurizio Bonini, Sara Anna |
author_sort | Premoli, Marika |
collection | PubMed |
description | Ultrasonic vocalizations (USVs) analysis is a well-recognized tool to investigate animal communication. It can be used for behavioral phenotyping of murine models of different disorders. The USVs are usually recorded with a microphone sensitive to ultrasound frequencies and they are analyzed by specific software. Different calls typologies exist, and each ultrasonic call can be manually classified, but the qualitative analysis is highly time-consuming. Considering this framework, in this work we proposed and evaluated a set of supervised learning methods for automatic USVs classification. This could represent a sustainable procedure to deeply analyze the ultrasonic communication, other than a standardized analysis. We used manually built datasets obtained by segmenting the USVs audio tracks analyzed with the Avisoft software, and then by labelling each of them into 10 representative classes. For the automatic classification task, we designed a Convolutional Neural Network that was trained receiving as input the spectrogram images associated to the segmented audio files. In addition, we also tested some other supervised learning algorithms, such as Support Vector Machine, Random Forest and Multilayer Perceptrons, exploiting informative numerical features extracted from the spectrograms. The performance showed how considering the whole time/frequency information of the spectrogram leads to significantly higher performance than considering a subset of numerical features. In the authors’ opinion, the experimental results may represent a valuable benchmark for future work in this research field. |
format | Online Article Text |
id | pubmed-7815145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-78151452021-01-27 Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks Premoli, Marika Baggi, Daniele Bianchetti, Marco Gnutti, Alessandro Bondaschi, Marco Mastinu, Andrea Migliorati, Pierangelo Signoroni, Alberto Leonardi, Riccardo Memo, Maurizio Bonini, Sara Anna PLoS One Research Article Ultrasonic vocalizations (USVs) analysis is a well-recognized tool to investigate animal communication. It can be used for behavioral phenotyping of murine models of different disorders. The USVs are usually recorded with a microphone sensitive to ultrasound frequencies and they are analyzed by specific software. Different calls typologies exist, and each ultrasonic call can be manually classified, but the qualitative analysis is highly time-consuming. Considering this framework, in this work we proposed and evaluated a set of supervised learning methods for automatic USVs classification. This could represent a sustainable procedure to deeply analyze the ultrasonic communication, other than a standardized analysis. We used manually built datasets obtained by segmenting the USVs audio tracks analyzed with the Avisoft software, and then by labelling each of them into 10 representative classes. For the automatic classification task, we designed a Convolutional Neural Network that was trained receiving as input the spectrogram images associated to the segmented audio files. In addition, we also tested some other supervised learning algorithms, such as Support Vector Machine, Random Forest and Multilayer Perceptrons, exploiting informative numerical features extracted from the spectrograms. The performance showed how considering the whole time/frequency information of the spectrogram leads to significantly higher performance than considering a subset of numerical features. In the authors’ opinion, the experimental results may represent a valuable benchmark for future work in this research field. Public Library of Science 2021-01-19 /pmc/articles/PMC7815145/ /pubmed/33465075 http://dx.doi.org/10.1371/journal.pone.0244636 Text en © 2021 Premoli et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Premoli, Marika Baggi, Daniele Bianchetti, Marco Gnutti, Alessandro Bondaschi, Marco Mastinu, Andrea Migliorati, Pierangelo Signoroni, Alberto Leonardi, Riccardo Memo, Maurizio Bonini, Sara Anna Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks |
title | Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks |
title_full | Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks |
title_fullStr | Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks |
title_full_unstemmed | Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks |
title_short | Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks |
title_sort | automatic classification of mice vocalizations using machine learning techniques and convolutional neural networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815145/ https://www.ncbi.nlm.nih.gov/pubmed/33465075 http://dx.doi.org/10.1371/journal.pone.0244636 |
work_keys_str_mv | AT premolimarika automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT baggidaniele automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT bianchettimarco automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT gnuttialessandro automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT bondaschimarco automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT mastinuandrea automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT miglioratipierangelo automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT signoronialberto automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT leonardiriccardo automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT memomaurizio automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks AT boninisaraanna automaticclassificationofmicevocalizationsusingmachinelearningtechniquesandconvolutionalneuralnetworks |