Cargando…
Machine Learning Supports Automated Digital Image Scoring of Stool Consistency in Diapers
BACKGROUND/AIMS: Accurate stool consistency classification of non–toilet-trained children remains challenging. This study evaluated the feasibility of automated classification of stool consistencies from diaper photos using machine learning (ML). METHODS: In total, 2687 usable smartphone photos of d...
Autores principales: | Ludwig, Thomas, Oukid, Ines, Wong, Jill, Ting, Steven, Huysentruyt, Koen, Roy, Puspita, Foussat, Agathe C., Vandenplas, Yvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815249/ https://www.ncbi.nlm.nih.gov/pubmed/33275399 http://dx.doi.org/10.1097/MPG.0000000000003007 |
Ejemplares similares
-
Real Time Versus Photographic Assessment of Stool Consistency Using the Brussels Infant and Toddler Stool Scale: Are They Telling Us the Same?
por: Aman, Berthold Albert, et al.
Publicado: (2021) -
Cow’s Milk-Related Symptom Score (CoMiSS): From Bristol to Brussels Stool Scale
por: Bajerova, Katerina, et al.
Publicado: (2023) -
Taeniasis Presenting as Motile Worms in the Stools: An Emerging but Neglected Parasitic Disease
por: Kandi, Venkataramana, et al.
Publicado: (2022) -
The Cow Milk Symptom Score (CoMiSS(TM)) in presumed healthy infants
por: Vandenplas, Yvan, et al.
Publicado: (2018) -
Outcomes of Hospitalized Patients With Fecal Occult Positive Stool Prior to Cardiac Catheterization in Acute Coronary Syndrome (ACS)
por: Searls, Lauren, et al.
Publicado: (2023)