Cargando…
Classification and prediction of protein–protein interaction interface using machine learning algorithm
Structural insight of the protein–protein interaction (PPI) interface can provide knowledge about the kinetics, thermodynamics and molecular functions of the complex while elucidating its role in diseases and further enabling it as a potential therapeutic target. However, owing to experimental lag i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815773/ https://www.ncbi.nlm.nih.gov/pubmed/33469042 http://dx.doi.org/10.1038/s41598-020-80900-2 |
_version_ | 1783638303271026688 |
---|---|
author | Das, Subhrangshu Chakrabarti, Saikat |
author_facet | Das, Subhrangshu Chakrabarti, Saikat |
author_sort | Das, Subhrangshu |
collection | PubMed |
description | Structural insight of the protein–protein interaction (PPI) interface can provide knowledge about the kinetics, thermodynamics and molecular functions of the complex while elucidating its role in diseases and further enabling it as a potential therapeutic target. However, owing to experimental lag in solving protein–protein complex structures, three-dimensional (3D) knowledge of the PPI interfaces can be gained via computational approaches like molecular docking and post-docking analyses. Despite development of numerous docking tools and techniques, success in identification of native like interfaces based on docking score functions is limited. Hence, we employed an in-depth investigation of the structural features of the interface that might successfully delineate native complexes from non-native ones. We identify interface properties, which show statistically significant difference between native and non-native interfaces belonging to homo and hetero, protein–protein complexes. Utilizing these properties, a support vector machine (SVM) based classification scheme has been implemented to differentiate native and non-native like complexes generated using docking decoys. Benchmarking and comparative analyses suggest very good performance of our SVM classifiers. Further, protein interactions, which are proven via experimental findings but not resolved structurally, were subjected to this approach where 3D-models of the complexes were generated and most likely interfaces were predicted. A web server called Protein Complex Prediction by Interface Properties (PCPIP) is developed to predict whether interface of a given protein–protein dimer complex resembles known protein interfaces. The server is freely available at http://www.hpppi.iicb.res.in/pcpip/. |
format | Online Article Text |
id | pubmed-7815773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78157732021-01-21 Classification and prediction of protein–protein interaction interface using machine learning algorithm Das, Subhrangshu Chakrabarti, Saikat Sci Rep Article Structural insight of the protein–protein interaction (PPI) interface can provide knowledge about the kinetics, thermodynamics and molecular functions of the complex while elucidating its role in diseases and further enabling it as a potential therapeutic target. However, owing to experimental lag in solving protein–protein complex structures, three-dimensional (3D) knowledge of the PPI interfaces can be gained via computational approaches like molecular docking and post-docking analyses. Despite development of numerous docking tools and techniques, success in identification of native like interfaces based on docking score functions is limited. Hence, we employed an in-depth investigation of the structural features of the interface that might successfully delineate native complexes from non-native ones. We identify interface properties, which show statistically significant difference between native and non-native interfaces belonging to homo and hetero, protein–protein complexes. Utilizing these properties, a support vector machine (SVM) based classification scheme has been implemented to differentiate native and non-native like complexes generated using docking decoys. Benchmarking and comparative analyses suggest very good performance of our SVM classifiers. Further, protein interactions, which are proven via experimental findings but not resolved structurally, were subjected to this approach where 3D-models of the complexes were generated and most likely interfaces were predicted. A web server called Protein Complex Prediction by Interface Properties (PCPIP) is developed to predict whether interface of a given protein–protein dimer complex resembles known protein interfaces. The server is freely available at http://www.hpppi.iicb.res.in/pcpip/. Nature Publishing Group UK 2021-01-19 /pmc/articles/PMC7815773/ /pubmed/33469042 http://dx.doi.org/10.1038/s41598-020-80900-2 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Das, Subhrangshu Chakrabarti, Saikat Classification and prediction of protein–protein interaction interface using machine learning algorithm |
title | Classification and prediction of protein–protein interaction interface using machine learning algorithm |
title_full | Classification and prediction of protein–protein interaction interface using machine learning algorithm |
title_fullStr | Classification and prediction of protein–protein interaction interface using machine learning algorithm |
title_full_unstemmed | Classification and prediction of protein–protein interaction interface using machine learning algorithm |
title_short | Classification and prediction of protein–protein interaction interface using machine learning algorithm |
title_sort | classification and prediction of protein–protein interaction interface using machine learning algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815773/ https://www.ncbi.nlm.nih.gov/pubmed/33469042 http://dx.doi.org/10.1038/s41598-020-80900-2 |
work_keys_str_mv | AT dassubhrangshu classificationandpredictionofproteinproteininteractioninterfaceusingmachinelearningalgorithm AT chakrabartisaikat classificationandpredictionofproteinproteininteractioninterfaceusingmachinelearningalgorithm |