Cargando…
Classification and prediction of protein–protein interaction interface using machine learning algorithm
Structural insight of the protein–protein interaction (PPI) interface can provide knowledge about the kinetics, thermodynamics and molecular functions of the complex while elucidating its role in diseases and further enabling it as a potential therapeutic target. However, owing to experimental lag i...
Autores principales: | Das, Subhrangshu, Chakrabarti, Saikat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815773/ https://www.ncbi.nlm.nih.gov/pubmed/33469042 http://dx.doi.org/10.1038/s41598-020-80900-2 |
Ejemplares similares
-
Corpus Callosum Atrophy in Detection of Mild and Moderate Alzheimer’s Disease Using Brain Magnetic Resonance Image Processing and Machine Learning Techniques
por: Das, Subhrangshu, et al.
Publicado: (2021) -
Co-evolutionary landscape at the interface and non-interface regions of protein-protein interaction complexes
por: Mukherjee, Ishita, et al.
Publicado: (2021) -
Protein Sequence Classification with Improved Extreme Learning Machine Algorithms
por: Cao, Jiuwen, et al.
Publicado: (2014) -
Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms
por: Huang, Chien-Hung, et al.
Publicado: (2015) -
Predicting protein–membrane interfaces of peripheral membrane proteins using ensemble machine learning
por: Chatzigoulas, Alexios, et al.
Publicado: (2022)