Cargando…

Uncomputability of phase diagrams

The phase diagram of a material is of central importance in describing the properties and behaviour of a condensed matter system. In this work, we prove that the task of determining the phase diagram of a many-body Hamiltonian is in general uncomputable, by explicitly constructing a continuous one-p...

Descripción completa

Detalles Bibliográficos
Autores principales: Bausch, Johannes, Cubitt, Toby S., Watson, James D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815885/
https://www.ncbi.nlm.nih.gov/pubmed/33469011
http://dx.doi.org/10.1038/s41467-020-20504-6
Descripción
Sumario:The phase diagram of a material is of central importance in describing the properties and behaviour of a condensed matter system. In this work, we prove that the task of determining the phase diagram of a many-body Hamiltonian is in general uncomputable, by explicitly constructing a continuous one-parameter family of Hamiltonians H(φ), where [Formula: see text] , for which this is the case. The H(φ) are translationally-invariant, with nearest-neighbour couplings on a 2D spin lattice. As well as implying uncomputablity of phase diagrams, our result also proves that undecidability can hold for a set of positive measure of a Hamiltonian’s parameter space, whereas previous results only implied undecidability on a zero measure set. This brings the spectral gap undecidability results a step closer to standard condensed matter problems, where one typically studies phase diagrams of many-body models as a function of one or more continuously varying real parameters, such as magnetic field strength or pressure.