Cargando…
A comparative study of evaluating missing value imputation methods in label-free proteomics
The presence of missing values (MVs) in label-free quantitative proteomics greatly reduces the completeness of data. Imputation has been widely utilized to handle MVs, and selection of the proper method is critical for the accuracy and reliability of imputation. Here we present a comparative study t...
Autores principales: | Jin, Liang, Bi, Yingtao, Hu, Chenqi, Qu, Jun, Shen, Shichen, Wang, Xue, Tian, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815892/ https://www.ncbi.nlm.nih.gov/pubmed/33469060 http://dx.doi.org/10.1038/s41598-021-81279-4 |
Ejemplares similares
-
Assessment of label-free quantification and missing value imputation for proteomics in non-human primates
por: Hamid, Zeeshan, et al.
Publicado: (2022) -
Normalization and missing value imputation for label-free LC-MS analysis
por: Karpievitch, Yuliya V, et al.
Publicado: (2012) -
Robust imputation method for missing values in microarray data
por: Yoon, Dankyu, et al.
Publicado: (2007) -
Evaluation of linear models and missing value imputation for the analysis of peptide-centric proteomics
por: Berg, Philip, et al.
Publicado: (2019) -
Missing value imputation in proximity extension assay-based targeted proteomics data
por: Lenz, Michael, et al.
Publicado: (2020)