Cargando…
The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis
BACKGROUND/PURPOSE: Significant research has proposed that the implant with microthread in the neck can significantly reduce marginal bone loss, but whether it is consistent in the condition of marginal bone loss is still unknown. The objective of this study is to investigate the effect of microthre...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Association for Dental Sciences of the Republic of China
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816038/ https://www.ncbi.nlm.nih.gov/pubmed/33505618 http://dx.doi.org/10.1016/j.jds.2019.12.003 |
_version_ | 1783638360482381824 |
---|---|
author | Jin, Zhi-Heng Peng, Meng-Dong Li, Qing |
author_facet | Jin, Zhi-Heng Peng, Meng-Dong Li, Qing |
author_sort | Jin, Zhi-Heng |
collection | PubMed |
description | BACKGROUND/PURPOSE: Significant research has proposed that the implant with microthread in the neck can significantly reduce marginal bone loss, but whether it is consistent in the condition of marginal bone loss is still unknown. The objective of this study is to investigate the effect of microthread on stress distribution in peri-implant bone with different bone level using finite element analysis. MATERIALS AND METHODS: A series of computational models of mandible segments with different bone resorption and implant models with or without microthread in the neck was installed by computer-aided design software. The simulated occlusal force of 150N was applied buccolingually on the top center point of implant. The FEA was performed, and the von Mises stress, principal stress and shear stress in peri-implant bone were recorded and analyzed. RESULTS: In all models, the T-neck group exhibits higher von Mises stress and principal stress, as well as lower shear stress than S-neck group. Three types of stresses increase with the depth of bone resorption developed, but the differences of shear stress between two groups of implants were gradually decreased. CONCLUSION: The micro-thread design in implant neck can reduce marginal bone loss by decreasing shear stress in peri-implant bone, but this effect is gradually weakened with the decline of the marginal bone level. |
format | Online Article Text |
id | pubmed-7816038 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Association for Dental Sciences of the Republic of China |
record_format | MEDLINE/PubMed |
spelling | pubmed-78160382021-01-26 The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis Jin, Zhi-Heng Peng, Meng-Dong Li, Qing J Dent Sci Original Article BACKGROUND/PURPOSE: Significant research has proposed that the implant with microthread in the neck can significantly reduce marginal bone loss, but whether it is consistent in the condition of marginal bone loss is still unknown. The objective of this study is to investigate the effect of microthread on stress distribution in peri-implant bone with different bone level using finite element analysis. MATERIALS AND METHODS: A series of computational models of mandible segments with different bone resorption and implant models with or without microthread in the neck was installed by computer-aided design software. The simulated occlusal force of 150N was applied buccolingually on the top center point of implant. The FEA was performed, and the von Mises stress, principal stress and shear stress in peri-implant bone were recorded and analyzed. RESULTS: In all models, the T-neck group exhibits higher von Mises stress and principal stress, as well as lower shear stress than S-neck group. Three types of stresses increase with the depth of bone resorption developed, but the differences of shear stress between two groups of implants were gradually decreased. CONCLUSION: The micro-thread design in implant neck can reduce marginal bone loss by decreasing shear stress in peri-implant bone, but this effect is gradually weakened with the decline of the marginal bone level. Association for Dental Sciences of the Republic of China 2020-12 2019-12-31 /pmc/articles/PMC7816038/ /pubmed/33505618 http://dx.doi.org/10.1016/j.jds.2019.12.003 Text en © 2020 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Jin, Zhi-Heng Peng, Meng-Dong Li, Qing The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis |
title | The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis |
title_full | The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis |
title_fullStr | The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis |
title_full_unstemmed | The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis |
title_short | The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis |
title_sort | effect of implant neck microthread design on stress distribution of peri-implant bone with different level: a finite element analysis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816038/ https://www.ncbi.nlm.nih.gov/pubmed/33505618 http://dx.doi.org/10.1016/j.jds.2019.12.003 |
work_keys_str_mv | AT jinzhiheng theeffectofimplantneckmicrothreaddesignonstressdistributionofperiimplantbonewithdifferentlevelafiniteelementanalysis AT pengmengdong theeffectofimplantneckmicrothreaddesignonstressdistributionofperiimplantbonewithdifferentlevelafiniteelementanalysis AT liqing theeffectofimplantneckmicrothreaddesignonstressdistributionofperiimplantbonewithdifferentlevelafiniteelementanalysis AT jinzhiheng effectofimplantneckmicrothreaddesignonstressdistributionofperiimplantbonewithdifferentlevelafiniteelementanalysis AT pengmengdong effectofimplantneckmicrothreaddesignonstressdistributionofperiimplantbonewithdifferentlevelafiniteelementanalysis AT liqing effectofimplantneckmicrothreaddesignonstressdistributionofperiimplantbonewithdifferentlevelafiniteelementanalysis |