Cargando…
Prediction of Promiscuity Cliffs Using Machine Learning
Compounds with the ability to interact with multiple targets, also called promiscuous compounds, provide the basis for polypharmacological drug discovery. In recent years, a plethora of structural analogs with different promiscuity has been identified. Nevertheless, the molecular origins of promiscu...
Autores principales: | Blaschke, Thomas, Feldmann, Christian, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816223/ https://www.ncbi.nlm.nih.gov/pubmed/32881355 http://dx.doi.org/10.1002/minf.202000196 |
Ejemplares similares
-
Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome
por: Miljković, Filip, et al.
Publicado: (2019) -
Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations
por: Feldmann, Christian, et al.
Publicado: (2021) -
Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity
por: Tamura, Shunsuke, et al.
Publicado: (2023) -
Increasing the public activity cliff knowledge base with new categories of activity cliffs
por: Hu, Huabin, et al.
Publicado: (2020) -
Advances in exploring activity cliffs
por: Stumpfe, Dagmar, et al.
Publicado: (2020)