Cargando…

MicroRNA-182 promotes epithelial-mesenchymal transition by targeting FOXN3 in gallbladder cancer

Increasing evidence has suggested an association between the expression profiles of microRNAs (miRs) and gallbladder cancer (GBC). Recently, miR-182 has been demonstrated to exert tumor-promoting effects. However, the biological activity and molecular mechanisms of miR-182 in GBC remain unclear. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jianhong, Hu, Zeming, Wen, Chao, Liao, Qicheng, He, Baoqing, Peng, Jing, Tang, Xin, Chen, Zhixi, Xie, Yuankang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816289/
https://www.ncbi.nlm.nih.gov/pubmed/33574939
http://dx.doi.org/10.3892/ol.2021.12461
Descripción
Sumario:Increasing evidence has suggested an association between the expression profiles of microRNAs (miRs) and gallbladder cancer (GBC). Recently, miR-182 has been demonstrated to exert tumor-promoting effects. However, the biological activity and molecular mechanisms of miR-182 in GBC remain unclear. The results of the present study demonstrated that miR-182 expression was significantly upregulated in GBC tissues and cell lines (GBC-SD and SGC-996). In addition, miR-182-knockdown attenuated epithelial-mesenchymal transition (EMT) in GBC cells, as indicated by decreased cell migratory and invasive abilities, decreased vimentin expression, and increased E-cadherin expression. The activities of β-catenin and its downstream factors, Cyclin D1 and c-Myc, were also demonstrated to decrease following miR-182-knockdown. Forkhead box N3 (FOXN3) was identified as the direct target of miR-182. Overexpression of FOXN3 ameliorated EMT and the β-catenin pathway. Taken together, the results of the present study suggested that miR-182 promotes EMT in GBC cells by targeting FOXN3, which suppresses the Wnt/β-catenin pathway.