Cargando…
Synergistic learning of lung lobe segmentation and hierarchical multi-instance classification for automated severity assessment of COVID-19 in CT images
Understanding chest CT imaging of the coronavirus disease 2019 (COVID-19) will help detect infections early and assess the disease progression. Especially, automated severity assessment of COVID-19 in CT images plays an essential role in identifying cases that are in great need of intensive clinical...
Autores principales: | He, Kelei, Zhao, Wei, Xie, Xingzhi, Ji, Wen, Liu, Mingxia, Tang, Zhenyu, Shi, Yinghuan, Shi, Feng, Gao, Yang, Liu, Jun, Zhang, Junfeng, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816595/ https://www.ncbi.nlm.nih.gov/pubmed/33495661 http://dx.doi.org/10.1016/j.patcog.2021.107828 |
Ejemplares similares
-
A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning
por: Li, Zekun, et al.
Publicado: (2021) -
Instance Segmentation and Ensemble Learning for Automatic Temperature Detection in Multiparous Sows
por: Xue, Hongxiang, et al.
Publicado: (2023) -
Instance Sequence Queries for Video Instance Segmentation with Transformers
por: Xu, Zhujun, et al.
Publicado: (2021) -
Appearance quality classification method of Huangguan pear under complex background based on instance segmentation and semantic segmentation
por: Zhang, Yuhang, et al.
Publicado: (2022) -
Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images
por: Liu, Xiaoming, et al.
Publicado: (2022)