Cargando…

A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode

Sodium metal anodes combine low redox potential (−2.71 V versus SHE) and high theoretical capacity (1165 mAh g(−1)), becoming a promising anode material for sodium‐ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan....

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Xue‐Yang, Wang, Ya‐Jing, Wu, Hua‐Deng, Lin, Xiao‐Dong, Tang, Shuai, Xu, Pan, Liao, Hong‐Gang, Zheng, Ming‐Sen, Dong, Quan‐Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816717/
https://www.ncbi.nlm.nih.gov/pubmed/33511020
http://dx.doi.org/10.1002/advs.202003178
_version_ 1783638498709864448
author Cui, Xue‐Yang
Wang, Ya‐Jing
Wu, Hua‐Deng
Lin, Xiao‐Dong
Tang, Shuai
Xu, Pan
Liao, Hong‐Gang
Zheng, Ming‐Sen
Dong, Quan‐Feng
author_facet Cui, Xue‐Yang
Wang, Ya‐Jing
Wu, Hua‐Deng
Lin, Xiao‐Dong
Tang, Shuai
Xu, Pan
Liao, Hong‐Gang
Zheng, Ming‐Sen
Dong, Quan‐Feng
author_sort Cui, Xue‐Yang
collection PubMed
description Sodium metal anodes combine low redox potential (−2.71 V versus SHE) and high theoretical capacity (1165 mAh g(−1)), becoming a promising anode material for sodium‐ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan. Herein, an oxygen‐doped carbon foam (OCF) derived from starch is reported. Heteroatom doping can significantly reduce the nucleation resistance of sodium metal; combined with its rich pore structure and large specific surface area, OCF provides abundant nucleation sites to effectively guide the nucleation and subsequent growth of sodium metal, and the nature of this foam can accommodate the deposited sodium. Furthermore, a more uniform, robust, and stable SEI layer is observed on the surface of OCF electrode, so it can maintain ultra‐high reversibility and excellent integrity for a long time without dendritic growth. As a result, when the current density is 10 mA cm(−2), the electrode can maintain stable 2000 cycles and the coulombic efficiency can reach to 99.83%. Na@OCF||Na(3)V(2)(PO(4))(3) full cell also has extremely high capacity retention of about 97.53% over 150 cycles. These results provide a simple but effective method for achieving the safety and commercialization of sodium metal anode.
format Online
Article
Text
id pubmed-7816717
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78167172021-01-27 A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode Cui, Xue‐Yang Wang, Ya‐Jing Wu, Hua‐Deng Lin, Xiao‐Dong Tang, Shuai Xu, Pan Liao, Hong‐Gang Zheng, Ming‐Sen Dong, Quan‐Feng Adv Sci (Weinh) Full Papers Sodium metal anodes combine low redox potential (−2.71 V versus SHE) and high theoretical capacity (1165 mAh g(−1)), becoming a promising anode material for sodium‐ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan. Herein, an oxygen‐doped carbon foam (OCF) derived from starch is reported. Heteroatom doping can significantly reduce the nucleation resistance of sodium metal; combined with its rich pore structure and large specific surface area, OCF provides abundant nucleation sites to effectively guide the nucleation and subsequent growth of sodium metal, and the nature of this foam can accommodate the deposited sodium. Furthermore, a more uniform, robust, and stable SEI layer is observed on the surface of OCF electrode, so it can maintain ultra‐high reversibility and excellent integrity for a long time without dendritic growth. As a result, when the current density is 10 mA cm(−2), the electrode can maintain stable 2000 cycles and the coulombic efficiency can reach to 99.83%. Na@OCF||Na(3)V(2)(PO(4))(3) full cell also has extremely high capacity retention of about 97.53% over 150 cycles. These results provide a simple but effective method for achieving the safety and commercialization of sodium metal anode. John Wiley and Sons Inc. 2020-12-04 /pmc/articles/PMC7816717/ /pubmed/33511020 http://dx.doi.org/10.1002/advs.202003178 Text en © 2020 The Authors. Advanced Science published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Cui, Xue‐Yang
Wang, Ya‐Jing
Wu, Hua‐Deng
Lin, Xiao‐Dong
Tang, Shuai
Xu, Pan
Liao, Hong‐Gang
Zheng, Ming‐Sen
Dong, Quan‐Feng
A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_full A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_fullStr A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_full_unstemmed A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_short A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_sort carbon foam with sodiophilic surface for highly reversible, ultra‐long cycle sodium metal anode
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816717/
https://www.ncbi.nlm.nih.gov/pubmed/33511020
http://dx.doi.org/10.1002/advs.202003178
work_keys_str_mv AT cuixueyang acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT wangyajing acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT wuhuadeng acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT linxiaodong acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT tangshuai acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT xupan acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT liaohonggang acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT zhengmingsen acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT dongquanfeng acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT cuixueyang carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT wangyajing carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT wuhuadeng carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT linxiaodong carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT tangshuai carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT xupan carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT liaohonggang carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT zhengmingsen carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT dongquanfeng carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode