Cargando…
A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
Sodium metal anodes combine low redox potential (−2.71 V versus SHE) and high theoretical capacity (1165 mAh g(−1)), becoming a promising anode material for sodium‐ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816717/ https://www.ncbi.nlm.nih.gov/pubmed/33511020 http://dx.doi.org/10.1002/advs.202003178 |
_version_ | 1783638498709864448 |
---|---|
author | Cui, Xue‐Yang Wang, Ya‐Jing Wu, Hua‐Deng Lin, Xiao‐Dong Tang, Shuai Xu, Pan Liao, Hong‐Gang Zheng, Ming‐Sen Dong, Quan‐Feng |
author_facet | Cui, Xue‐Yang Wang, Ya‐Jing Wu, Hua‐Deng Lin, Xiao‐Dong Tang, Shuai Xu, Pan Liao, Hong‐Gang Zheng, Ming‐Sen Dong, Quan‐Feng |
author_sort | Cui, Xue‐Yang |
collection | PubMed |
description | Sodium metal anodes combine low redox potential (−2.71 V versus SHE) and high theoretical capacity (1165 mAh g(−1)), becoming a promising anode material for sodium‐ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan. Herein, an oxygen‐doped carbon foam (OCF) derived from starch is reported. Heteroatom doping can significantly reduce the nucleation resistance of sodium metal; combined with its rich pore structure and large specific surface area, OCF provides abundant nucleation sites to effectively guide the nucleation and subsequent growth of sodium metal, and the nature of this foam can accommodate the deposited sodium. Furthermore, a more uniform, robust, and stable SEI layer is observed on the surface of OCF electrode, so it can maintain ultra‐high reversibility and excellent integrity for a long time without dendritic growth. As a result, when the current density is 10 mA cm(−2), the electrode can maintain stable 2000 cycles and the coulombic efficiency can reach to 99.83%. Na@OCF||Na(3)V(2)(PO(4))(3) full cell also has extremely high capacity retention of about 97.53% over 150 cycles. These results provide a simple but effective method for achieving the safety and commercialization of sodium metal anode. |
format | Online Article Text |
id | pubmed-7816717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78167172021-01-27 A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode Cui, Xue‐Yang Wang, Ya‐Jing Wu, Hua‐Deng Lin, Xiao‐Dong Tang, Shuai Xu, Pan Liao, Hong‐Gang Zheng, Ming‐Sen Dong, Quan‐Feng Adv Sci (Weinh) Full Papers Sodium metal anodes combine low redox potential (−2.71 V versus SHE) and high theoretical capacity (1165 mAh g(−1)), becoming a promising anode material for sodium‐ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan. Herein, an oxygen‐doped carbon foam (OCF) derived from starch is reported. Heteroatom doping can significantly reduce the nucleation resistance of sodium metal; combined with its rich pore structure and large specific surface area, OCF provides abundant nucleation sites to effectively guide the nucleation and subsequent growth of sodium metal, and the nature of this foam can accommodate the deposited sodium. Furthermore, a more uniform, robust, and stable SEI layer is observed on the surface of OCF electrode, so it can maintain ultra‐high reversibility and excellent integrity for a long time without dendritic growth. As a result, when the current density is 10 mA cm(−2), the electrode can maintain stable 2000 cycles and the coulombic efficiency can reach to 99.83%. Na@OCF||Na(3)V(2)(PO(4))(3) full cell also has extremely high capacity retention of about 97.53% over 150 cycles. These results provide a simple but effective method for achieving the safety and commercialization of sodium metal anode. John Wiley and Sons Inc. 2020-12-04 /pmc/articles/PMC7816717/ /pubmed/33511020 http://dx.doi.org/10.1002/advs.202003178 Text en © 2020 The Authors. Advanced Science published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Cui, Xue‐Yang Wang, Ya‐Jing Wu, Hua‐Deng Lin, Xiao‐Dong Tang, Shuai Xu, Pan Liao, Hong‐Gang Zheng, Ming‐Sen Dong, Quan‐Feng A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode |
title | A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode |
title_full | A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode |
title_fullStr | A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode |
title_full_unstemmed | A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode |
title_short | A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode |
title_sort | carbon foam with sodiophilic surface for highly reversible, ultra‐long cycle sodium metal anode |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816717/ https://www.ncbi.nlm.nih.gov/pubmed/33511020 http://dx.doi.org/10.1002/advs.202003178 |
work_keys_str_mv | AT cuixueyang acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT wangyajing acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT wuhuadeng acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT linxiaodong acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT tangshuai acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT xupan acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT liaohonggang acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT zhengmingsen acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT dongquanfeng acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT cuixueyang carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT wangyajing carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT wuhuadeng carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT linxiaodong carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT tangshuai carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT xupan carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT liaohonggang carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT zhengmingsen carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode AT dongquanfeng carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode |