Cargando…

FLOWERING LOCUS T4 delays flowering and decreases floret fertility in barley

FLOWERING LOCUS T-like (FT-like) genes control the photoperiodic regulation of flowering in many angiosperm plants. The family of FT-like genes is characterized by extensive gene duplication and subsequent diversification of FT functions which occurred independently in modern angiosperm lineages. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Pieper, Rebecca, Tomé, Filipa, Pankin, Artem, von Korff, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816854/
https://www.ncbi.nlm.nih.gov/pubmed/33048122
http://dx.doi.org/10.1093/jxb/eraa466
Descripción
Sumario:FLOWERING LOCUS T-like (FT-like) genes control the photoperiodic regulation of flowering in many angiosperm plants. The family of FT-like genes is characterized by extensive gene duplication and subsequent diversification of FT functions which occurred independently in modern angiosperm lineages. In barley, there are 12 known FT-like genes (HvFT), but the function of most of them remains uncharacterized. This study aimed to characterize the role of HvFT4 in flowering time control and development in barley. The overexpression of HvFT4 in the spring cultivar Golden Promise delayed flowering time under long-day conditions. Microscopic dissection of the shoot apical meristem revealed that overexpression of HvFT4 specifically delayed spikelet initiation and reduced the number of spikelet primordia and grains per spike. Furthermore, ectopic overexpression of HvFT4 was associated with floret abortion and with the down-regulation of the barley MADS-box genes VRN-H1, HvBM3, and HvBM8 which promote floral development. This suggests that HvFT4 functions as a repressor of reproductive development in barley. Unraveling the genetic basis of FT-like genes can contribute to the identification of novel breeding targets to modify reproductive development and thereby spike morphology and grain yield.