Cargando…

Use of machine learning to identify a T cell response to SARS-CoV-2

The identification of SARS-CoV-2-specific T cell receptor (TCR) sequences is critical for understanding T cell responses to SARS-CoV-2. Accordingly, we reanalyze publicly available data from SARS-CoV-2-recovered patients who had low-severity disease (n = 17) and SARS-CoV-2 infection-naive (control)...

Descripción completa

Detalles Bibliográficos
Autores principales: Shoukat, M. Saad, Foers, Andrew D., Woodmansey, Stephen, Evans, Shelley C., Fowler, Anna, Soilleux, Elizabeth J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816879/
https://www.ncbi.nlm.nih.gov/pubmed/33495756
http://dx.doi.org/10.1016/j.xcrm.2021.100192
_version_ 1783638526130126848
author Shoukat, M. Saad
Foers, Andrew D.
Woodmansey, Stephen
Evans, Shelley C.
Fowler, Anna
Soilleux, Elizabeth J.
author_facet Shoukat, M. Saad
Foers, Andrew D.
Woodmansey, Stephen
Evans, Shelley C.
Fowler, Anna
Soilleux, Elizabeth J.
author_sort Shoukat, M. Saad
collection PubMed
description The identification of SARS-CoV-2-specific T cell receptor (TCR) sequences is critical for understanding T cell responses to SARS-CoV-2. Accordingly, we reanalyze publicly available data from SARS-CoV-2-recovered patients who had low-severity disease (n = 17) and SARS-CoV-2 infection-naive (control) individuals (n = 39). Applying a machine learning approach to TCR beta (TRB) repertoire data, we can classify patient/control samples with a training sensitivity, specificity, and accuracy of 88.2%, 100%, and 96.4% and a testing sensitivity, specificity, and accuracy of 82.4%, 97.4%, and 92.9%, respectively. Interestingly, the same machine learning approach cannot separate SARS-CoV-2 recovered from SARS-CoV-2 infection-naive individual samples on the basis of B cell receptor (immunoglobulin heavy chain; IGH) repertoire data, suggesting that the T cell response to SARS-CoV-2 may be more stereotyped and longer lived. Following validation in larger cohorts, our method may be useful in detecting protective immunity acquired through natural infection or in determining the longevity of vaccine-induced immunity.
format Online
Article
Text
id pubmed-7816879
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-78168792021-01-21 Use of machine learning to identify a T cell response to SARS-CoV-2 Shoukat, M. Saad Foers, Andrew D. Woodmansey, Stephen Evans, Shelley C. Fowler, Anna Soilleux, Elizabeth J. Cell Rep Med Report The identification of SARS-CoV-2-specific T cell receptor (TCR) sequences is critical for understanding T cell responses to SARS-CoV-2. Accordingly, we reanalyze publicly available data from SARS-CoV-2-recovered patients who had low-severity disease (n = 17) and SARS-CoV-2 infection-naive (control) individuals (n = 39). Applying a machine learning approach to TCR beta (TRB) repertoire data, we can classify patient/control samples with a training sensitivity, specificity, and accuracy of 88.2%, 100%, and 96.4% and a testing sensitivity, specificity, and accuracy of 82.4%, 97.4%, and 92.9%, respectively. Interestingly, the same machine learning approach cannot separate SARS-CoV-2 recovered from SARS-CoV-2 infection-naive individual samples on the basis of B cell receptor (immunoglobulin heavy chain; IGH) repertoire data, suggesting that the T cell response to SARS-CoV-2 may be more stereotyped and longer lived. Following validation in larger cohorts, our method may be useful in detecting protective immunity acquired through natural infection or in determining the longevity of vaccine-induced immunity. Elsevier 2021-01-16 /pmc/articles/PMC7816879/ /pubmed/33495756 http://dx.doi.org/10.1016/j.xcrm.2021.100192 Text en © 2021 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Report
Shoukat, M. Saad
Foers, Andrew D.
Woodmansey, Stephen
Evans, Shelley C.
Fowler, Anna
Soilleux, Elizabeth J.
Use of machine learning to identify a T cell response to SARS-CoV-2
title Use of machine learning to identify a T cell response to SARS-CoV-2
title_full Use of machine learning to identify a T cell response to SARS-CoV-2
title_fullStr Use of machine learning to identify a T cell response to SARS-CoV-2
title_full_unstemmed Use of machine learning to identify a T cell response to SARS-CoV-2
title_short Use of machine learning to identify a T cell response to SARS-CoV-2
title_sort use of machine learning to identify a t cell response to sars-cov-2
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816879/
https://www.ncbi.nlm.nih.gov/pubmed/33495756
http://dx.doi.org/10.1016/j.xcrm.2021.100192
work_keys_str_mv AT shoukatmsaad useofmachinelearningtoidentifyatcellresponsetosarscov2
AT foersandrewd useofmachinelearningtoidentifyatcellresponsetosarscov2
AT woodmanseystephen useofmachinelearningtoidentifyatcellresponsetosarscov2
AT evansshelleyc useofmachinelearningtoidentifyatcellresponsetosarscov2
AT fowleranna useofmachinelearningtoidentifyatcellresponsetosarscov2
AT soilleuxelizabethj useofmachinelearningtoidentifyatcellresponsetosarscov2