Cargando…
Use of machine learning to identify a T cell response to SARS-CoV-2
The identification of SARS-CoV-2-specific T cell receptor (TCR) sequences is critical for understanding T cell responses to SARS-CoV-2. Accordingly, we reanalyze publicly available data from SARS-CoV-2-recovered patients who had low-severity disease (n = 17) and SARS-CoV-2 infection-naive (control)...
Autores principales: | Shoukat, M. Saad, Foers, Andrew D., Woodmansey, Stephen, Evans, Shelley C., Fowler, Anna, Soilleux, Elizabeth J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816879/ https://www.ncbi.nlm.nih.gov/pubmed/33495756 http://dx.doi.org/10.1016/j.xcrm.2021.100192 |
Ejemplares similares
-
Classification of intestinal T‐cell receptor repertoires using machine learning methods can identify patients with coeliac disease regardless of dietary gluten status
por: Foers, Andrew D, et al.
Publicado: (2021) -
Utility of Bulk T-Cell Receptor Repertoire Sequencing Analysis in Understanding Immune Responses to COVID-19
por: Kockelbergh, Hannah, et al.
Publicado: (2022) -
High Prevalence of Pre-Existing Liver Abnormalities Identified Via Autopsies in COVID-19: Identification of a New Silent Risk Factor?
por: Hirayama, Yuri, et al.
Publicado: (2021) -
Supervised Machine Learning Models to Identify Early-Stage Symptoms of SARS-CoV-2
por: Dritsas, Elias, et al.
Publicado: (2022) -
Classification of SARS-CoV-2 and non-SARS-CoV-2 using machine learning algorithms
por: Singh, Om Prakash, et al.
Publicado: (2021)