Cargando…
Network propagation of rare variants in Alzheimer’s disease reveals tissue-specific hub genes and communities
State-of-the-art rare variant association testing methods aggregate the contribution of rare variants in biologically relevant genomic regions to boost statistical power. However, testing single genes separately does not consider the complex interaction landscape of genes, nor the downstream effects...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817020/ https://www.ncbi.nlm.nih.gov/pubmed/33411734 http://dx.doi.org/10.1371/journal.pcbi.1008517 |
_version_ | 1783638555710455808 |
---|---|
author | Scelsi, Marzia Antonella Napolioni, Valerio Greicius, Michael D. Altmann, Andre |
author_facet | Scelsi, Marzia Antonella Napolioni, Valerio Greicius, Michael D. Altmann, Andre |
author_sort | Scelsi, Marzia Antonella |
collection | PubMed |
description | State-of-the-art rare variant association testing methods aggregate the contribution of rare variants in biologically relevant genomic regions to boost statistical power. However, testing single genes separately does not consider the complex interaction landscape of genes, nor the downstream effects of non-synonymous variants on protein structure and function. Here we present the NETwork Propagation-based Assessment of Genetic Events (NETPAGE), an integrative approach aimed at investigating the biological pathways through which rare variation results in complex disease phenotypes. We applied NETPAGE to sporadic, late-onset Alzheimer’s disease (AD), using whole-genome sequencing from the AD Neuroimaging Initiative (ADNI) cohort, as well as whole-exome sequencing from the AD Sequencing Project (ADSP). NETPAGE is based on network propagation, a framework that models information flow on a graph and simulates the percolation of genetic variation through tissue-specific gene interaction networks. The result of network propagation is a set of smoothed gene scores that can be tested for association with disease status through sparse regression. The application of NETPAGE to AD enabled the identification of a set of connected genes whose smoothed variation profile was robustly associated to case-control status, based on gene interactions in the hippocampus. Additionally, smoothed scores significantly correlated with risk of conversion to AD in Mild Cognitive Impairment (MCI) subjects. Lastly, we investigated tissue-specific transcriptional dysregulation of the core genes in two independent RNA-seq datasets, as well as significant enrichments in terms of gene sets with known connections to AD. We present a framework that enables enhanced genetic association testing for a wide range of traits, diseases, and sample sizes. |
format | Online Article Text |
id | pubmed-7817020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-78170202021-01-28 Network propagation of rare variants in Alzheimer’s disease reveals tissue-specific hub genes and communities Scelsi, Marzia Antonella Napolioni, Valerio Greicius, Michael D. Altmann, Andre PLoS Comput Biol Research Article State-of-the-art rare variant association testing methods aggregate the contribution of rare variants in biologically relevant genomic regions to boost statistical power. However, testing single genes separately does not consider the complex interaction landscape of genes, nor the downstream effects of non-synonymous variants on protein structure and function. Here we present the NETwork Propagation-based Assessment of Genetic Events (NETPAGE), an integrative approach aimed at investigating the biological pathways through which rare variation results in complex disease phenotypes. We applied NETPAGE to sporadic, late-onset Alzheimer’s disease (AD), using whole-genome sequencing from the AD Neuroimaging Initiative (ADNI) cohort, as well as whole-exome sequencing from the AD Sequencing Project (ADSP). NETPAGE is based on network propagation, a framework that models information flow on a graph and simulates the percolation of genetic variation through tissue-specific gene interaction networks. The result of network propagation is a set of smoothed gene scores that can be tested for association with disease status through sparse regression. The application of NETPAGE to AD enabled the identification of a set of connected genes whose smoothed variation profile was robustly associated to case-control status, based on gene interactions in the hippocampus. Additionally, smoothed scores significantly correlated with risk of conversion to AD in Mild Cognitive Impairment (MCI) subjects. Lastly, we investigated tissue-specific transcriptional dysregulation of the core genes in two independent RNA-seq datasets, as well as significant enrichments in terms of gene sets with known connections to AD. We present a framework that enables enhanced genetic association testing for a wide range of traits, diseases, and sample sizes. Public Library of Science 2021-01-07 /pmc/articles/PMC7817020/ /pubmed/33411734 http://dx.doi.org/10.1371/journal.pcbi.1008517 Text en © 2021 Scelsi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Scelsi, Marzia Antonella Napolioni, Valerio Greicius, Michael D. Altmann, Andre Network propagation of rare variants in Alzheimer’s disease reveals tissue-specific hub genes and communities |
title | Network propagation of rare variants in Alzheimer’s disease reveals tissue-specific hub genes and communities |
title_full | Network propagation of rare variants in Alzheimer’s disease reveals tissue-specific hub genes and communities |
title_fullStr | Network propagation of rare variants in Alzheimer’s disease reveals tissue-specific hub genes and communities |
title_full_unstemmed | Network propagation of rare variants in Alzheimer’s disease reveals tissue-specific hub genes and communities |
title_short | Network propagation of rare variants in Alzheimer’s disease reveals tissue-specific hub genes and communities |
title_sort | network propagation of rare variants in alzheimer’s disease reveals tissue-specific hub genes and communities |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817020/ https://www.ncbi.nlm.nih.gov/pubmed/33411734 http://dx.doi.org/10.1371/journal.pcbi.1008517 |
work_keys_str_mv | AT scelsimarziaantonella networkpropagationofrarevariantsinalzheimersdiseaserevealstissuespecifichubgenesandcommunities AT napolionivalerio networkpropagationofrarevariantsinalzheimersdiseaserevealstissuespecifichubgenesandcommunities AT greiciusmichaeld networkpropagationofrarevariantsinalzheimersdiseaserevealstissuespecifichubgenesandcommunities AT altmannandre networkpropagationofrarevariantsinalzheimersdiseaserevealstissuespecifichubgenesandcommunities AT networkpropagationofrarevariantsinalzheimersdiseaserevealstissuespecifichubgenesandcommunities |