Cargando…

Atomic-scale spin-polarization maps using functionalized superconducting probes

A scanning tunneling microscope (STM) with a magnetic tip that has a sufficiently strong spin polarization can be used to map the sample’s spin structure down to the atomic scale but usually lacks the possibility to absolutely determine the value of the sample’s spin polarization. Magnetic impuritie...

Descripción completa

Detalles Bibliográficos
Autores principales: Schneider, Lucas, Beck, Philip, Wiebe, Jens, Wiesendanger, Roland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817096/
https://www.ncbi.nlm.nih.gov/pubmed/33523927
http://dx.doi.org/10.1126/sciadv.abd7302
Descripción
Sumario:A scanning tunneling microscope (STM) with a magnetic tip that has a sufficiently strong spin polarization can be used to map the sample’s spin structure down to the atomic scale but usually lacks the possibility to absolutely determine the value of the sample’s spin polarization. Magnetic impurities in superconducting materials give rise to pairs of perfectly, i.e., 100%, spin-polarized subgap resonances. In this work, we functionalize the apex of a superconducting Nb STM tip with such impurity states by attaching Fe atoms to probe the spin polarization of atom-manipulated Mn nanomagnets on a Nb(110) surface. By comparison with spin-polarized STM measurements of the same nanomagnets using Cr bulk tips, we demonstrate an extraordinary spin sensitivity and the possibility to measure the sample’s spin-polarization values close to the Fermi level quantitatively with our new functionalized probes.