Cargando…
Electric field–catalyzed single-molecule Diels-Alder reaction dynamics
Precise time trajectories and detailed reaction pathways of the Diels-Alder reaction were directly observed using accurate single-molecule detection on an in situ label-free single-molecule electrical detection platform. This study demonstrates the well-accepted concerted mechanism and clarifies the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817103/ https://www.ncbi.nlm.nih.gov/pubmed/33523936 http://dx.doi.org/10.1126/sciadv.abf0689 |
Sumario: | Precise time trajectories and detailed reaction pathways of the Diels-Alder reaction were directly observed using accurate single-molecule detection on an in situ label-free single-molecule electrical detection platform. This study demonstrates the well-accepted concerted mechanism and clarifies the role of charge transfer complexes with endo or exo configurations on the reaction path. An unprecedented stepwise pathway was verified at high temperatures in a high-voltage electric field. Experiments and theoretical results revealed an electric field–catalyzed mechanism that shows the presence of a zwitterionic intermediate with one bond formation and variation of concerted and stepwise reactions by the strength of the electric field, thus establishing a previously unidentified approach for mechanistic control by electric field catalysis. |
---|