Cargando…
Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear
Hair cells are heterogenous, enabling varied roles in sensory systems. An emerging hypothesis is that the transmembrane channel-like (Tmc) proteins of the hair cell’s mechanotransduction apparatus vary within and between organs to permit encoding of different mechanical stimuli. Five anatomical vari...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817542/ https://www.ncbi.nlm.nih.gov/pubmed/33490059 http://dx.doi.org/10.3389/fcell.2020.570486 |
_version_ | 1783638661510725632 |
---|---|
author | Zhu, Shaoyuan Chen, Zongwei Wang, Haoming McDermott, Brian M. |
author_facet | Zhu, Shaoyuan Chen, Zongwei Wang, Haoming McDermott, Brian M. |
author_sort | Zhu, Shaoyuan |
collection | PubMed |
description | Hair cells are heterogenous, enabling varied roles in sensory systems. An emerging hypothesis is that the transmembrane channel-like (Tmc) proteins of the hair cell’s mechanotransduction apparatus vary within and between organs to permit encoding of different mechanical stimuli. Five anatomical variables that may coincide with different Tmc use by a hair cell within the ear are the containing organ, cell morphology, cell position within an organ, axis of best sensitivity for the cell, and the hair bundle’s orientation within this axis. Here, we test this hypothesis in the organs of the zebrafish ear using a suite of genetic mutations. Transgenesis and quantitative measurements demonstrate two morphologically distinct hair cell types in the central thickness of a vestibular organ, the lateral crista: short and tall. In contrast to what has been observed, we find that tall hair cells that lack Tmc1 generally have substantial reductions in mechanosensitivity. In short hair cells that lack Tmc2 isoforms, mechanotransduction is largely abated. However, hair cell Tmc dependencies are not absolute, and an exceptional class of short hair cell that depends on Tmc1 is present, termed a short hair cell erratic. To further test anatomical variables that may influence Tmc use, we map Tmc1 function in the saccule of mutant larvae that depend just on this Tmc protein to hear. We demonstrate that hair cells that use Tmc1 are found in the posterior region of the saccule, within a single axis of best sensitivity, and hair bundles with opposite orientations retain function. Overall, we determine that Tmc reliance in the ear is dependent on the organ, subtype of hair cell, position within the ear, and axis of best sensitivity. |
format | Online Article Text |
id | pubmed-7817542 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78175422021-01-22 Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear Zhu, Shaoyuan Chen, Zongwei Wang, Haoming McDermott, Brian M. Front Cell Dev Biol Cell and Developmental Biology Hair cells are heterogenous, enabling varied roles in sensory systems. An emerging hypothesis is that the transmembrane channel-like (Tmc) proteins of the hair cell’s mechanotransduction apparatus vary within and between organs to permit encoding of different mechanical stimuli. Five anatomical variables that may coincide with different Tmc use by a hair cell within the ear are the containing organ, cell morphology, cell position within an organ, axis of best sensitivity for the cell, and the hair bundle’s orientation within this axis. Here, we test this hypothesis in the organs of the zebrafish ear using a suite of genetic mutations. Transgenesis and quantitative measurements demonstrate two morphologically distinct hair cell types in the central thickness of a vestibular organ, the lateral crista: short and tall. In contrast to what has been observed, we find that tall hair cells that lack Tmc1 generally have substantial reductions in mechanosensitivity. In short hair cells that lack Tmc2 isoforms, mechanotransduction is largely abated. However, hair cell Tmc dependencies are not absolute, and an exceptional class of short hair cell that depends on Tmc1 is present, termed a short hair cell erratic. To further test anatomical variables that may influence Tmc use, we map Tmc1 function in the saccule of mutant larvae that depend just on this Tmc protein to hear. We demonstrate that hair cells that use Tmc1 are found in the posterior region of the saccule, within a single axis of best sensitivity, and hair bundles with opposite orientations retain function. Overall, we determine that Tmc reliance in the ear is dependent on the organ, subtype of hair cell, position within the ear, and axis of best sensitivity. Frontiers Media S.A. 2021-01-07 /pmc/articles/PMC7817542/ /pubmed/33490059 http://dx.doi.org/10.3389/fcell.2020.570486 Text en Copyright © 2021 Zhu, Chen, Wang and McDermott. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Zhu, Shaoyuan Chen, Zongwei Wang, Haoming McDermott, Brian M. Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear |
title | Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear |
title_full | Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear |
title_fullStr | Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear |
title_full_unstemmed | Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear |
title_short | Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear |
title_sort | tmc reliance is biased by the hair cell subtype and position within the ear |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817542/ https://www.ncbi.nlm.nih.gov/pubmed/33490059 http://dx.doi.org/10.3389/fcell.2020.570486 |
work_keys_str_mv | AT zhushaoyuan tmcrelianceisbiasedbythehaircellsubtypeandpositionwithintheear AT chenzongwei tmcrelianceisbiasedbythehaircellsubtypeandpositionwithintheear AT wanghaoming tmcrelianceisbiasedbythehaircellsubtypeandpositionwithintheear AT mcdermottbrianm tmcrelianceisbiasedbythehaircellsubtypeandpositionwithintheear |