Cargando…
A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation
Nowadays, intelligent robots are widely applied in the manufacturing industry, in various working places or assembly lines. In most manufacturing tasks, determining the category and pose of parts is important, yet challenging, due to complex environments. This paper presents a new two-stage intellig...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817625/ https://www.ncbi.nlm.nih.gov/pubmed/33488378 http://dx.doi.org/10.3389/fnbot.2020.616775 |
_version_ | 1783638679206494208 |
---|---|
author | Liang, Guoyuan Chen, Fan Liang, Yu Feng, Yachun Wang, Can Wu, Xinyu |
author_facet | Liang, Guoyuan Chen, Fan Liang, Yu Feng, Yachun Wang, Can Wu, Xinyu |
author_sort | Liang, Guoyuan |
collection | PubMed |
description | Nowadays, intelligent robots are widely applied in the manufacturing industry, in various working places or assembly lines. In most manufacturing tasks, determining the category and pose of parts is important, yet challenging, due to complex environments. This paper presents a new two-stage intelligent vision system based on a deep neural network with RGB-D image inputs for object recognition and 6D pose estimation. A dense-connected network fusing multi-scale features is first built to segment the objects from the background. The 2D pixels and 3D points in cropped object regions are then fed into a pose estimation network to make object pose predictions based on fusion of color and geometry features. By introducing the channel and position attention modules, the pose estimation network presents an effective feature extraction method, by stressing important features whilst suppressing unnecessary ones. Comparative experiments with several state-of-the-art networks conducted on two well-known benchmark datasets, YCB-Video and LineMOD, verified the effectiveness and superior performance of the proposed method. Moreover, we built a vision-guided robotic grasping system based on the proposed method using a Kinova Jaco2 manipulator with an RGB-D camera installed. Grasping experiments proved that the robot system can effectively implement common operations such as picking up and moving objects, thereby demonstrating its potential to be applied in all kinds of real-time manufacturing applications. |
format | Online Article Text |
id | pubmed-7817625 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78176252021-01-22 A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation Liang, Guoyuan Chen, Fan Liang, Yu Feng, Yachun Wang, Can Wu, Xinyu Front Neurorobot Neuroscience Nowadays, intelligent robots are widely applied in the manufacturing industry, in various working places or assembly lines. In most manufacturing tasks, determining the category and pose of parts is important, yet challenging, due to complex environments. This paper presents a new two-stage intelligent vision system based on a deep neural network with RGB-D image inputs for object recognition and 6D pose estimation. A dense-connected network fusing multi-scale features is first built to segment the objects from the background. The 2D pixels and 3D points in cropped object regions are then fed into a pose estimation network to make object pose predictions based on fusion of color and geometry features. By introducing the channel and position attention modules, the pose estimation network presents an effective feature extraction method, by stressing important features whilst suppressing unnecessary ones. Comparative experiments with several state-of-the-art networks conducted on two well-known benchmark datasets, YCB-Video and LineMOD, verified the effectiveness and superior performance of the proposed method. Moreover, we built a vision-guided robotic grasping system based on the proposed method using a Kinova Jaco2 manipulator with an RGB-D camera installed. Grasping experiments proved that the robot system can effectively implement common operations such as picking up and moving objects, thereby demonstrating its potential to be applied in all kinds of real-time manufacturing applications. Frontiers Media S.A. 2021-01-07 /pmc/articles/PMC7817625/ /pubmed/33488378 http://dx.doi.org/10.3389/fnbot.2020.616775 Text en Copyright © 2021 Liang, Chen, Liang, Feng, Wang and Wu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Liang, Guoyuan Chen, Fan Liang, Yu Feng, Yachun Wang, Can Wu, Xinyu A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation |
title | A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation |
title_full | A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation |
title_fullStr | A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation |
title_full_unstemmed | A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation |
title_short | A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation |
title_sort | manufacturing-oriented intelligent vision system based on deep neural network for object recognition and 6d pose estimation |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817625/ https://www.ncbi.nlm.nih.gov/pubmed/33488378 http://dx.doi.org/10.3389/fnbot.2020.616775 |
work_keys_str_mv | AT liangguoyuan amanufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT chenfan amanufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT liangyu amanufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT fengyachun amanufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT wangcan amanufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT wuxinyu amanufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT liangguoyuan manufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT chenfan manufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT liangyu manufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT fengyachun manufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT wangcan manufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation AT wuxinyu manufacturingorientedintelligentvisionsystembasedondeepneuralnetworkforobjectrecognitionand6dposeestimation |