Cargando…

Glucose transporter Glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment

BACKGROUND: Gliomas typically escape surgical resection and recur due to their “diffuse invasion” phenotype, enabling them to infiltrate diffusely into the normal brain parenchyma. Over the past 80 years, studies have revealed 2 key features of the “diffuse invasion” phenotype, designated the Schere...

Descripción completa

Detalles Bibliográficos
Autores principales: Miyai, Masafumi, Kanayama, Tomohiro, Hyodo, Fuminori, Kinoshita, Takamasa, Ishihara, Takuma, Okada, Hideshi, Suzuki, Hiroki, Takashima, Shigeo, Wu, Zhiliang, Hatano, Yuichiro, Egashira, Yusuke, Enomoto, Yukiko, Nakayama, Noriyuki, Soeda, Akio, Yano, Hirohito, Hirata, Akihiro, Niwa, Masayuki, Sugie, Shigeyuki, Mori, Takashi, Maekawa, Yoichi, Iwama, Toru, Matsuo, Masayuki, Hara, Akira, Tomita, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817894/
https://www.ncbi.nlm.nih.gov/pubmed/33506198
http://dx.doi.org/10.1093/noajnl/vdaa150
_version_ 1783638728036581376
author Miyai, Masafumi
Kanayama, Tomohiro
Hyodo, Fuminori
Kinoshita, Takamasa
Ishihara, Takuma
Okada, Hideshi
Suzuki, Hiroki
Takashima, Shigeo
Wu, Zhiliang
Hatano, Yuichiro
Egashira, Yusuke
Enomoto, Yukiko
Nakayama, Noriyuki
Soeda, Akio
Yano, Hirohito
Hirata, Akihiro
Niwa, Masayuki
Sugie, Shigeyuki
Mori, Takashi
Maekawa, Yoichi
Iwama, Toru
Matsuo, Masayuki
Hara, Akira
Tomita, Hiroyuki
author_facet Miyai, Masafumi
Kanayama, Tomohiro
Hyodo, Fuminori
Kinoshita, Takamasa
Ishihara, Takuma
Okada, Hideshi
Suzuki, Hiroki
Takashima, Shigeo
Wu, Zhiliang
Hatano, Yuichiro
Egashira, Yusuke
Enomoto, Yukiko
Nakayama, Noriyuki
Soeda, Akio
Yano, Hirohito
Hirata, Akihiro
Niwa, Masayuki
Sugie, Shigeyuki
Mori, Takashi
Maekawa, Yoichi
Iwama, Toru
Matsuo, Masayuki
Hara, Akira
Tomita, Hiroyuki
author_sort Miyai, Masafumi
collection PubMed
description BACKGROUND: Gliomas typically escape surgical resection and recur due to their “diffuse invasion” phenotype, enabling them to infiltrate diffusely into the normal brain parenchyma. Over the past 80 years, studies have revealed 2 key features of the “diffuse invasion” phenotype, designated the Scherer’s secondary structure, and include perineuronal satellitosis (PS) and perivascular satellitosis (PVS). However, the mechanisms are still unknown. METHODS: We established a mouse glioma cell line (IG27) by manipulating the histone H3K27M mutation, frequently harboring in diffuse intrinsic pontine gliomas, that reproduced the diffuse invasion phenotype, PS and PVS, following intracranial transplantation in the mouse brain. Further, to broadly apply the results in this mouse model to human gliomas, we analyzed data from 66 glioma patients. RESULTS: Increased H3K27 acetylation in IG27 cells activated glucose transporter 1 (Glut1) expression and induced aerobic glycolysis and TCA cycle activation, leading to lactate, acetyl-CoA, and oncometabolite production irrespective of oxygen and glucose levels. Gain- and loss-of-function in vivo experiments demonstrated that Glut1 controls the PS of glioma cells, that is, attachment to and contact with neurons. GLUT1 is also associated with early progression in glioma patients. CONCLUSIONS: Targeting the transporter Glut1 suppresses the unique phenotype, “diffuse invasion” in the diffuse glioma mouse model. This work leads to promising therapeutic and potential useful imaging targets for anti-invasion in human gliomas widely.
format Online
Article
Text
id pubmed-7817894
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-78178942021-01-26 Glucose transporter Glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment Miyai, Masafumi Kanayama, Tomohiro Hyodo, Fuminori Kinoshita, Takamasa Ishihara, Takuma Okada, Hideshi Suzuki, Hiroki Takashima, Shigeo Wu, Zhiliang Hatano, Yuichiro Egashira, Yusuke Enomoto, Yukiko Nakayama, Noriyuki Soeda, Akio Yano, Hirohito Hirata, Akihiro Niwa, Masayuki Sugie, Shigeyuki Mori, Takashi Maekawa, Yoichi Iwama, Toru Matsuo, Masayuki Hara, Akira Tomita, Hiroyuki Neurooncol Adv Basic and Translational Investigations BACKGROUND: Gliomas typically escape surgical resection and recur due to their “diffuse invasion” phenotype, enabling them to infiltrate diffusely into the normal brain parenchyma. Over the past 80 years, studies have revealed 2 key features of the “diffuse invasion” phenotype, designated the Scherer’s secondary structure, and include perineuronal satellitosis (PS) and perivascular satellitosis (PVS). However, the mechanisms are still unknown. METHODS: We established a mouse glioma cell line (IG27) by manipulating the histone H3K27M mutation, frequently harboring in diffuse intrinsic pontine gliomas, that reproduced the diffuse invasion phenotype, PS and PVS, following intracranial transplantation in the mouse brain. Further, to broadly apply the results in this mouse model to human gliomas, we analyzed data from 66 glioma patients. RESULTS: Increased H3K27 acetylation in IG27 cells activated glucose transporter 1 (Glut1) expression and induced aerobic glycolysis and TCA cycle activation, leading to lactate, acetyl-CoA, and oncometabolite production irrespective of oxygen and glucose levels. Gain- and loss-of-function in vivo experiments demonstrated that Glut1 controls the PS of glioma cells, that is, attachment to and contact with neurons. GLUT1 is also associated with early progression in glioma patients. CONCLUSIONS: Targeting the transporter Glut1 suppresses the unique phenotype, “diffuse invasion” in the diffuse glioma mouse model. This work leads to promising therapeutic and potential useful imaging targets for anti-invasion in human gliomas widely. Oxford University Press 2020-10-30 /pmc/articles/PMC7817894/ /pubmed/33506198 http://dx.doi.org/10.1093/noajnl/vdaa150 Text en © The Author(s) 2020. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Basic and Translational Investigations
Miyai, Masafumi
Kanayama, Tomohiro
Hyodo, Fuminori
Kinoshita, Takamasa
Ishihara, Takuma
Okada, Hideshi
Suzuki, Hiroki
Takashima, Shigeo
Wu, Zhiliang
Hatano, Yuichiro
Egashira, Yusuke
Enomoto, Yukiko
Nakayama, Noriyuki
Soeda, Akio
Yano, Hirohito
Hirata, Akihiro
Niwa, Masayuki
Sugie, Shigeyuki
Mori, Takashi
Maekawa, Yoichi
Iwama, Toru
Matsuo, Masayuki
Hara, Akira
Tomita, Hiroyuki
Glucose transporter Glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment
title Glucose transporter Glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment
title_full Glucose transporter Glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment
title_fullStr Glucose transporter Glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment
title_full_unstemmed Glucose transporter Glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment
title_short Glucose transporter Glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment
title_sort glucose transporter glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment
topic Basic and Translational Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817894/
https://www.ncbi.nlm.nih.gov/pubmed/33506198
http://dx.doi.org/10.1093/noajnl/vdaa150
work_keys_str_mv AT miyaimasafumi glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT kanayamatomohiro glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT hyodofuminori glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT kinoshitatakamasa glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT ishiharatakuma glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT okadahideshi glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT suzukihiroki glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT takashimashigeo glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT wuzhiliang glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT hatanoyuichiro glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT egashirayusuke glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT enomotoyukiko glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT nakayamanoriyuki glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT soedaakio glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT yanohirohito glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT hirataakihiro glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT niwamasayuki glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT sugieshigeyuki glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT moritakashi glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT maekawayoichi glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT iwamatoru glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT matsuomasayuki glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT haraakira glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment
AT tomitahiroyuki glucosetransporterglut1controlsdiffuseinvasionphenotypewithperineuronalsatellitosisindiffusegliomamicroenvironment