Cargando…

The Relativistic Boltzmann Equation and Two Times

We discuss a covariant relativistic Boltzmann equation which describes the evolution of a system of particles in spacetime evolving with a universal invariant parameter [Formula: see text]. The observed time t of Einstein and Maxwell, in the presence of interaction, is not necessarily a monotonic fu...

Descripción completa

Detalles Bibliográficos
Autor principal: Horwitz, L. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818102/
https://www.ncbi.nlm.nih.gov/pubmed/33286575
http://dx.doi.org/10.3390/e22080804
_version_ 1783638765370081280
author Horwitz, L. P.
author_facet Horwitz, L. P.
author_sort Horwitz, L. P.
collection PubMed
description We discuss a covariant relativistic Boltzmann equation which describes the evolution of a system of particles in spacetime evolving with a universal invariant parameter [Formula: see text]. The observed time t of Einstein and Maxwell, in the presence of interaction, is not necessarily a monotonic function of [Formula: see text]. If [Formula: see text] increases with [Formula: see text] , the worldline may be associated with a normal particle, but if it is decreasing in [Formula: see text] , it is observed in the laboratory as an antiparticle. This paper discusses the implications for entropy evolution in this relativistic framework. It is shown that if an ensemble of particles and antiparticles, converge in a region of pair annihilation, the entropy of the antiparticle beam may decreaase in time.
format Online
Article
Text
id pubmed-7818102
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78181022021-02-24 The Relativistic Boltzmann Equation and Two Times Horwitz, L. P. Entropy (Basel) Article We discuss a covariant relativistic Boltzmann equation which describes the evolution of a system of particles in spacetime evolving with a universal invariant parameter [Formula: see text]. The observed time t of Einstein and Maxwell, in the presence of interaction, is not necessarily a monotonic function of [Formula: see text]. If [Formula: see text] increases with [Formula: see text] , the worldline may be associated with a normal particle, but if it is decreasing in [Formula: see text] , it is observed in the laboratory as an antiparticle. This paper discusses the implications for entropy evolution in this relativistic framework. It is shown that if an ensemble of particles and antiparticles, converge in a region of pair annihilation, the entropy of the antiparticle beam may decreaase in time. MDPI 2020-07-22 /pmc/articles/PMC7818102/ /pubmed/33286575 http://dx.doi.org/10.3390/e22080804 Text en © 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Horwitz, L. P.
The Relativistic Boltzmann Equation and Two Times
title The Relativistic Boltzmann Equation and Two Times
title_full The Relativistic Boltzmann Equation and Two Times
title_fullStr The Relativistic Boltzmann Equation and Two Times
title_full_unstemmed The Relativistic Boltzmann Equation and Two Times
title_short The Relativistic Boltzmann Equation and Two Times
title_sort relativistic boltzmann equation and two times
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818102/
https://www.ncbi.nlm.nih.gov/pubmed/33286575
http://dx.doi.org/10.3390/e22080804
work_keys_str_mv AT horwitzlp therelativisticboltzmannequationandtwotimes
AT horwitzlp relativisticboltzmannequationandtwotimes