Cargando…
Temperature Hysteresis Mechanism and Compensation of Quartz Flexible Accelerometer in Aerial Inertial Navigation System
Strap-down inertial navigation systems (INSs) with quartz flexible accelerometers (QFAs) are widely used in many conditions, particularly in aerial vehicles. Temperature is one of the significant issues impacting the performance of INS. The variation and the gradient of temperature are complex under...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818178/ https://www.ncbi.nlm.nih.gov/pubmed/33406710 http://dx.doi.org/10.3390/s21010294 |
_version_ | 1783638779487059968 |
---|---|
author | Zhang, Chunxi Wang, Xin Song, Lailiang Ran, Longjun |
author_facet | Zhang, Chunxi Wang, Xin Song, Lailiang Ran, Longjun |
author_sort | Zhang, Chunxi |
collection | PubMed |
description | Strap-down inertial navigation systems (INSs) with quartz flexible accelerometers (QFAs) are widely used in many conditions, particularly in aerial vehicles. Temperature is one of the significant issues impacting the performance of INS. The variation and the gradient of temperature are complex under aerial conditions, which severely degrades the navigation performance of INS. Previous work has indicated that parts of navigation errors could be restrained by simple temperature compensation of QFA. However, the temperature hysteresis of the accelerometer is seldom considered in INS. In this paper, the temperature hysteresis mechanism of QFA and the compensation method would be analyzed. Based on the fundamental model, a comprehensive temperature hysteresis model is proposed and the parameters in this model were derived through a temperature cycling test. Furthermore, the comparative experiments in the laboratory were executed to refine the temperature hysteresis model and to verify the effectiveness of the new compensation method. Applying the temperature hysteresis compensation in flight condition, the result shows that the position error (CEP) is restrained from 1.54 nmile/h to 1.29 nmile/h. The proposed temperature hysteresis compensation method improves the performance of INS effectively and feasibly, which could be promoted to other applications of INS in similar temperature changing environment correspondingly. |
format | Online Article Text |
id | pubmed-7818178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78181782021-01-22 Temperature Hysteresis Mechanism and Compensation of Quartz Flexible Accelerometer in Aerial Inertial Navigation System Zhang, Chunxi Wang, Xin Song, Lailiang Ran, Longjun Sensors (Basel) Article Strap-down inertial navigation systems (INSs) with quartz flexible accelerometers (QFAs) are widely used in many conditions, particularly in aerial vehicles. Temperature is one of the significant issues impacting the performance of INS. The variation and the gradient of temperature are complex under aerial conditions, which severely degrades the navigation performance of INS. Previous work has indicated that parts of navigation errors could be restrained by simple temperature compensation of QFA. However, the temperature hysteresis of the accelerometer is seldom considered in INS. In this paper, the temperature hysteresis mechanism of QFA and the compensation method would be analyzed. Based on the fundamental model, a comprehensive temperature hysteresis model is proposed and the parameters in this model were derived through a temperature cycling test. Furthermore, the comparative experiments in the laboratory were executed to refine the temperature hysteresis model and to verify the effectiveness of the new compensation method. Applying the temperature hysteresis compensation in flight condition, the result shows that the position error (CEP) is restrained from 1.54 nmile/h to 1.29 nmile/h. The proposed temperature hysteresis compensation method improves the performance of INS effectively and feasibly, which could be promoted to other applications of INS in similar temperature changing environment correspondingly. MDPI 2021-01-04 /pmc/articles/PMC7818178/ /pubmed/33406710 http://dx.doi.org/10.3390/s21010294 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Chunxi Wang, Xin Song, Lailiang Ran, Longjun Temperature Hysteresis Mechanism and Compensation of Quartz Flexible Accelerometer in Aerial Inertial Navigation System |
title | Temperature Hysteresis Mechanism and Compensation of Quartz Flexible Accelerometer in Aerial Inertial Navigation System |
title_full | Temperature Hysteresis Mechanism and Compensation of Quartz Flexible Accelerometer in Aerial Inertial Navigation System |
title_fullStr | Temperature Hysteresis Mechanism and Compensation of Quartz Flexible Accelerometer in Aerial Inertial Navigation System |
title_full_unstemmed | Temperature Hysteresis Mechanism and Compensation of Quartz Flexible Accelerometer in Aerial Inertial Navigation System |
title_short | Temperature Hysteresis Mechanism and Compensation of Quartz Flexible Accelerometer in Aerial Inertial Navigation System |
title_sort | temperature hysteresis mechanism and compensation of quartz flexible accelerometer in aerial inertial navigation system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818178/ https://www.ncbi.nlm.nih.gov/pubmed/33406710 http://dx.doi.org/10.3390/s21010294 |
work_keys_str_mv | AT zhangchunxi temperaturehysteresismechanismandcompensationofquartzflexibleaccelerometerinaerialinertialnavigationsystem AT wangxin temperaturehysteresismechanismandcompensationofquartzflexibleaccelerometerinaerialinertialnavigationsystem AT songlailiang temperaturehysteresismechanismandcompensationofquartzflexibleaccelerometerinaerialinertialnavigationsystem AT ranlongjun temperaturehysteresismechanismandcompensationofquartzflexibleaccelerometerinaerialinertialnavigationsystem |