Cargando…
Interpretable Machine Learning Framework Reveals Robust Gut Microbiome Features Associated With Type 2 Diabetes
OBJECTIVE: To identify the core gut microbial features associated with type 2 diabetes risk and potential demographic, adiposity, and dietary factors associated with these features. RESEARCH DESIGN AND METHODS: We used an interpretable machine learning framework to identify the type 2 diabetes–relat...
Autores principales: | Gou, Wanglong, Ling, Chu-wen, He, Yan, Jiang, Zengliang, Fu, Yuanqing, Xu, Fengzhe, Miao, Zelei, Sun, Ting-yu, Lin, Jie-sheng, Zhu, Hui-lian, Zhou, Hongwei, Chen, Yu-ming, Zheng, Ju-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818326/ https://www.ncbi.nlm.nih.gov/pubmed/33288652 http://dx.doi.org/10.2337/dc20-1536 |
Ejemplares similares
-
The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases
por: Xu, Fengzhe, et al.
Publicado: (2020) -
Erythrocyte n-6 Polyunsaturated Fatty Acids, Gut Microbiota, and Incident Type 2 Diabetes: A Prospective Cohort Study
por: Miao, Zelei, et al.
Publicado: (2020) -
Multi-omics analyses reveal relationships among dairy consumption, gut microbiota and cardiometabolic health
por: Shuai, Menglei, et al.
Publicado: (2021) -
Human Gut Antibiotic Resistome and Progression of Diabetes
por: Shuai, Menglei, et al.
Publicado: (2022) -
Early-life exposure to the Great Chinese Famine and gut microbiome disruption across adulthood for type 2 diabetes: three population-based cohort studies
por: Gou, Wanglong, et al.
Publicado: (2023)