Cargando…
Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images
We propose an effective deep learning model to denoise scanning transmission electron microscopy (STEM) image series, named Noise2Atom, to map images from a source domain [Formula: see text] to a target domain [Formula: see text] , where [Formula: see text] is for our noisy experimental dataset, and...
Autores principales: | Wang, Feng, Henninen, Trond R., Keller, Debora, Erni, Rolf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818366/ https://www.ncbi.nlm.nih.gov/pubmed/33580362 http://dx.doi.org/10.1186/s42649-020-00041-8 |
Ejemplares similares
-
Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in-situ liquid cell STEM
por: Dachraoui, Walid, et al.
Publicado: (2021) -
Denoising Autoencoder
Trained on Simulation-Derived
Structures for Noise Reduction in Chromatin Scanning Transmission
Electron Microscopy
por: Alvarado, Walter, et al.
Publicado: (2023) -
Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging
por: Somnath, Suhas, et al.
Publicado: (2018) -
Formation of Au Nanoparticles in Liquid Cell Transmission
Electron Microscopy: From a Systematic Study to Engineered Nanostructures
por: Zhang, Yucheng, et al.
Publicado: (2017) -
Identifying and manipulating single atoms with scanning transmission electron microscopy
por: Susi, Toma
Publicado: (2022)