Cargando…
Site‐specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9
Lipidation of transmembrane proteins regulates many cellular activities, including signal transduction, cell–cell communication, and membrane trafficking. However, how lipidation at different sites in a membrane protein affects structure and function remains elusive. Here, using native mass spectrom...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818406/ https://www.ncbi.nlm.nih.gov/pubmed/32181977 http://dx.doi.org/10.1111/febs.15295 |
_version_ | 1783638827864162304 |
---|---|
author | Neviani, Viviana van Deventer, Sjoerd Wörner, Tobias P. Xenaki, Katerina T. van de Waterbeemd, Michiel Rodenburg, Remco N. P. Wortel, Inge M. N. Kuiper, Jeroen K. Huisman, Sofie Granneman, Joke van Bergen en Henegouwen, Paul M. P. Heck, Albert J. R. van Spriel, Annemiek B. Gros, Piet |
author_facet | Neviani, Viviana van Deventer, Sjoerd Wörner, Tobias P. Xenaki, Katerina T. van de Waterbeemd, Michiel Rodenburg, Remco N. P. Wortel, Inge M. N. Kuiper, Jeroen K. Huisman, Sofie Granneman, Joke van Bergen en Henegouwen, Paul M. P. Heck, Albert J. R. van Spriel, Annemiek B. Gros, Piet |
author_sort | Neviani, Viviana |
collection | PubMed |
description | Lipidation of transmembrane proteins regulates many cellular activities, including signal transduction, cell–cell communication, and membrane trafficking. However, how lipidation at different sites in a membrane protein affects structure and function remains elusive. Here, using native mass spectrometry we determined that wild‐type human tetraspanins CD9 and CD81 exhibit nonstochastic distributions of bound acyl chains. We revealed CD9 lipidation at its three most frequent lipidated sites suffices for EWI‐F binding, while cysteine‐to‐alanine CD9 mutations markedly reduced binding of EWI‐F. EWI‐F binding by CD9 was rescued by mutating all or, albeit to a lesser extent, only the three most frequently lipidated sites into tryptophans. These mutations did not affect the nanoscale distribution of CD9 in cell membranes, as shown by super‐resolution microscopy using a CD9‐specific nanobody. Thus, these data demonstrate site‐specific, possibly conformation‐dependent, functionality of lipidation in tetraspanin CD9 and identify tryptophan mimicry as a possible biochemical approach to study site‐specific transmembrane‐protein lipidation. |
format | Online Article Text |
id | pubmed-7818406 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78184062021-01-29 Site‐specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9 Neviani, Viviana van Deventer, Sjoerd Wörner, Tobias P. Xenaki, Katerina T. van de Waterbeemd, Michiel Rodenburg, Remco N. P. Wortel, Inge M. N. Kuiper, Jeroen K. Huisman, Sofie Granneman, Joke van Bergen en Henegouwen, Paul M. P. Heck, Albert J. R. van Spriel, Annemiek B. Gros, Piet FEBS J Original Articles Lipidation of transmembrane proteins regulates many cellular activities, including signal transduction, cell–cell communication, and membrane trafficking. However, how lipidation at different sites in a membrane protein affects structure and function remains elusive. Here, using native mass spectrometry we determined that wild‐type human tetraspanins CD9 and CD81 exhibit nonstochastic distributions of bound acyl chains. We revealed CD9 lipidation at its three most frequent lipidated sites suffices for EWI‐F binding, while cysteine‐to‐alanine CD9 mutations markedly reduced binding of EWI‐F. EWI‐F binding by CD9 was rescued by mutating all or, albeit to a lesser extent, only the three most frequently lipidated sites into tryptophans. These mutations did not affect the nanoscale distribution of CD9 in cell membranes, as shown by super‐resolution microscopy using a CD9‐specific nanobody. Thus, these data demonstrate site‐specific, possibly conformation‐dependent, functionality of lipidation in tetraspanin CD9 and identify tryptophan mimicry as a possible biochemical approach to study site‐specific transmembrane‐protein lipidation. John Wiley and Sons Inc. 2020-04-07 2020-12 /pmc/articles/PMC7818406/ /pubmed/32181977 http://dx.doi.org/10.1111/febs.15295 Text en © 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Neviani, Viviana van Deventer, Sjoerd Wörner, Tobias P. Xenaki, Katerina T. van de Waterbeemd, Michiel Rodenburg, Remco N. P. Wortel, Inge M. N. Kuiper, Jeroen K. Huisman, Sofie Granneman, Joke van Bergen en Henegouwen, Paul M. P. Heck, Albert J. R. van Spriel, Annemiek B. Gros, Piet Site‐specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9 |
title | Site‐specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9 |
title_full | Site‐specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9 |
title_fullStr | Site‐specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9 |
title_full_unstemmed | Site‐specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9 |
title_short | Site‐specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9 |
title_sort | site‐specific functionality and tryptophan mimicry of lipidation in tetraspanin cd9 |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818406/ https://www.ncbi.nlm.nih.gov/pubmed/32181977 http://dx.doi.org/10.1111/febs.15295 |
work_keys_str_mv | AT nevianiviviana sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT vandeventersjoerd sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT wornertobiasp sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT xenakikaterinat sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT vandewaterbeemdmichiel sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT rodenburgremconp sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT wortelingemn sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT kuiperjeroenk sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT huismansofie sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT grannemanjoke sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT vanbergenenhenegouwenpaulmp sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT heckalbertjr sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT vansprielannemiekb sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 AT grospiet sitespecificfunctionalityandtryptophanmimicryoflipidationintetraspanincd9 |