Cargando…

GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking

Protein–ligand docking programs are indispensable tools for predicting the binding pose of a ligand to the receptor protein. In this paper, we introduce an efficient flexible docking method, gwovina, which is a variant of the Vina implementation using the grey wolf optimizer (GWO) and random walk fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Kin Meng, Tai, Hio Kuan, Siu, Shirley W. I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818481/
https://www.ncbi.nlm.nih.gov/pubmed/32679606
http://dx.doi.org/10.1111/cbdd.13764
Descripción
Sumario:Protein–ligand docking programs are indispensable tools for predicting the binding pose of a ligand to the receptor protein. In this paper, we introduce an efficient flexible docking method, gwovina, which is a variant of the Vina implementation using the grey wolf optimizer (GWO) and random walk for the global search, and the Dunbrack rotamer library for side‐chain sampling. The new method was validated for rigid and flexible‐receptor docking using four independent datasets. In rigid docking, gwovina showed comparable docking performance to Vina in terms of ligand pose RMSD, success rate, and affinity prediction. In flexible‐receptor docking, gwovina has improved success rate compared to Vina and AutoDockFR. It ran 2 to 7 times faster than Vina and 40 to 100 times faster than AutoDockFR. Therefore, gwovina can play a role in solving the complex flexible‐receptor docking cases and is suitable for virtual screening of compound libraries. gwovina is freely available at https://cbbio.cis.um.edu.mo/software/gwovina for testing.