Cargando…

Searching for New Polymorphs by Epitaxial Growth

[Image: see text] The formation of unknown polymorphs due to the crystallization at a substrate surface is frequently observed. This phenomenon is much less studied for epitaxially grown molecular crystals since the unambiguous proof of a new polymorph is a challenging task. The existence of multipl...

Descripción completa

Detalles Bibliográficos
Autores principales: Simbrunner, Josef, Schrode, Benedikt, Hofer, Sebastian, Domke, Jari, Fritz, Torsten, Forker, Roman, Resel, Roland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818500/
https://www.ncbi.nlm.nih.gov/pubmed/33488907
http://dx.doi.org/10.1021/acs.jpcc.0c10021
Descripción
Sumario:[Image: see text] The formation of unknown polymorphs due to the crystallization at a substrate surface is frequently observed. This phenomenon is much less studied for epitaxially grown molecular crystals since the unambiguous proof of a new polymorph is a challenging task. The existence of multiple epitaxial alignments of the crystallites together with the simultaneous presence of different polymorphs does not allow simple phase identification. We present grazing incidence X-ray diffraction studies on conjugated molecules like perylenetetracarboxylic dianhydride (PTCDA), pentacene, dibenzopentacene (trans-DBPen), and dicyanovinylquater-thiophene (DCV4T-Et2) grown by physical vapor deposition on single crystalline surfaces like Ag(111), Cu(111), and graphene. A new method for indexing the observed Bragg peaks allows the determination of the crystallographic unit cells so that the type of crystallographic phase can be clearly identified. This approach even works when several polymorphs are simultaneously present within a single sample as shown for DCV4T-Et2 on Ag(111). Additionally, epitaxial relationships between the epitaxially grown crystallites and the single crystalline surfaces are determined. In a subsequent step, the experimental data are used for the crystal structure solution of an unknown polymorph, as shown for the example trans-DBPen grown on Cu(111).