Cargando…
High performance logistic regression for privacy-preserving genome analysis
BACKGROUND: In biomedical applications, valuable data is often split between owners who cannot openly share the data because of privacy regulations and concerns. Training machine learning models on the joint data without violating privacy is a major technology challenge that can be addressed by comb...
Autores principales: | De Cock, Martine, Dowsley, Rafael, Nascimento, Anderson C. A., Railsback, Davis, Shen, Jianwei, Todoki, Ariel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818577/ https://www.ncbi.nlm.nih.gov/pubmed/33472626 http://dx.doi.org/10.1186/s12920-020-00869-9 |
Ejemplares similares
-
Privacy-preserving architecture for providing feedback to clinicians on their clinical performance
por: Yigzaw, Kassaye Yitbarek, et al.
Publicado: (2020) -
Privacy-preserving record linkage using Bloom filters
por: Schnell, Rainer, et al.
Publicado: (2009) -
Privacy-preserving logistic regression training
por: Bonte, Charlotte, et al.
Publicado: (2018) -
Privacy-preserving record linkage in large databases using secure multiparty computation
por: Laud, Peeter, et al.
Publicado: (2018) -
A Bayesian hierarchical logistic regression model of multiple informant family health histories
por: Lin, Jielu, et al.
Publicado: (2019)