Cargando…

Association analysis of repetitive elements and R-loop formation across species

BACKGROUND: Although recent studies have revealed the genome-wide distribution of R-loops, our understanding of R-loop formation is still limited. Genomes are known to have a large number of repetitive elements. Emerging evidence suggests that these sequences may play an important regulatory role. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Chao, Onoguchi, Masahiro, Hamada, Michiaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818932/
https://www.ncbi.nlm.nih.gov/pubmed/33472695
http://dx.doi.org/10.1186/s13100-021-00231-5
Descripción
Sumario:BACKGROUND: Although recent studies have revealed the genome-wide distribution of R-loops, our understanding of R-loop formation is still limited. Genomes are known to have a large number of repetitive elements. Emerging evidence suggests that these sequences may play an important regulatory role. However, few studies have investigated the effect of repetitive elements on R-loop formation. RESULTS: We found different repetitive elements related to R-loop formation in various species. By controlling length and genomic distributions, we observed that satellite, long interspersed nuclear elements (LINEs), and DNA transposons were each specifically enriched for R-loops in humans, fruit flies, and Arabidopsis thaliana, respectively. R-loops also tended to arise in regions of low-complexity or simple repeats across species. We also found that the repetitive elements associated with R-loop formation differ according to developmental stage. For instance, LINEs and long terminal repeat retrotransposons (LTRs) are more likely to contain R-loops in embryos (fruit fly) and then turn out to be low-complexity and simple repeats in post-developmental S2 cells. CONCLUSIONS: Our results indicate that repetitive elements may have species-specific or development-specific regulatory effects on R-loop formation. This work advances our understanding of repetitive elements and R-loop biology. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s13100-021-00231-5).