Cargando…
Predicting epidemics using search engine data: a comparative study on measles in the largest countries of Europe
BACKGROUND: In recent years new forms of syndromic surveillance that use data from the Internet have been proposed. These have been developed to assist the early prediction of epidemics in various cases and diseases. It has been found that these systems are accurate in monitoring and predicting outb...
Autores principales: | Samaras, Loukas, Sicilia, Miguel-Angel, García-Barriocanal, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819209/ https://www.ncbi.nlm.nih.gov/pubmed/33472589 http://dx.doi.org/10.1186/s12889-020-10106-8 |
Ejemplares similares
-
Comparing Social media and Google to detect and predict severe epidemics
por: Samaras, Loukas, et al.
Publicado: (2020) -
Syndromic surveillance using web data: a systematic review
por: Samaras, Loukas, et al.
Publicado: (2020) -
Sentiment analysis of COVID-19 cases in Greece using Twitter data
por: Samaras, Loukas, et al.
Publicado: (2023) -
Syndromic Surveillance Models Using Web Data: The Case of Influenza in Greece and Italy Using Google Trends
por: Samaras, Loukas, et al.
Publicado: (2017) -
Measles Epidemic in Pakistan: In Search of Solutions
por: Niazi, AK, et al.
Publicado: (2014)