Cargando…
Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep Learning
The accurate predicting of physical properties and bioactivity of drug molecules in deep learning depends on how molecules are represented. Many types of molecular descriptors have been developed for quantitative structure-activity/property relationships quantitative structure-activity relationships...
Autores principales: | Xie, Liangxu, Xu, Lei, Kong, Ren, Chang, Shan, Xu, Xiaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819282/ https://www.ncbi.nlm.nih.gov/pubmed/33488387 http://dx.doi.org/10.3389/fphar.2020.606668 |
Ejemplares similares
-
Neural networks prediction of the protein-ligand binding affinity with circular fingerprints
por: Yin, Zuode, et al.
Publicado: (2023) -
Application of Machine Learning Methods to Predict the Air Half-Lives of Persistent Organic Pollutants
por: Zhang, Ying, et al.
Publicado: (2023) -
Elucidation of Binding Features and Dissociation Pathways of Inhibitors and Modulators in SARS-CoV-2 Main Protease by Multiple Molecular Dynamics Simulations
por: Xu, Lei, et al.
Publicado: (2022) -
Deep kernel learning improves molecular fingerprint prediction from tandem mass spectra
por: Dührkop, Kai
Publicado: (2022) -
Blood Immune Cell Composition Associated with Obesity and Drug Repositioning Revealed by Epigenetic and Transcriptomic Conjoint Analysis
por: Liu, Jia-Chen, et al.
Publicado: (2021)