Cargando…

Persistent thermal input controls steering behavior in Caenorhabditis elegans

Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering be...

Descripción completa

Detalles Bibliográficos
Autores principales: Ikeda, Muneki, Matsumoto, Hirotaka, Izquierdo, Eduardo J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819614/
https://www.ncbi.nlm.nih.gov/pubmed/33417596
http://dx.doi.org/10.1371/journal.pcbi.1007916
_version_ 1783639038633181184
author Ikeda, Muneki
Matsumoto, Hirotaka
Izquierdo, Eduardo J.
author_facet Ikeda, Muneki
Matsumoto, Hirotaka
Izquierdo, Eduardo J.
author_sort Ikeda, Muneki
collection PubMed
description Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C. elegans. Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C. elegans. Our results suggest that employments of temporally persistent sensory signals enable small animals to steer toward a destination in natural environment with variable, noisy, and subtle cues.
format Online
Article
Text
id pubmed-7819614
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-78196142021-01-28 Persistent thermal input controls steering behavior in Caenorhabditis elegans Ikeda, Muneki Matsumoto, Hirotaka Izquierdo, Eduardo J. PLoS Comput Biol Research Article Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C. elegans. Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C. elegans. Our results suggest that employments of temporally persistent sensory signals enable small animals to steer toward a destination in natural environment with variable, noisy, and subtle cues. Public Library of Science 2021-01-08 /pmc/articles/PMC7819614/ /pubmed/33417596 http://dx.doi.org/10.1371/journal.pcbi.1007916 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Ikeda, Muneki
Matsumoto, Hirotaka
Izquierdo, Eduardo J.
Persistent thermal input controls steering behavior in Caenorhabditis elegans
title Persistent thermal input controls steering behavior in Caenorhabditis elegans
title_full Persistent thermal input controls steering behavior in Caenorhabditis elegans
title_fullStr Persistent thermal input controls steering behavior in Caenorhabditis elegans
title_full_unstemmed Persistent thermal input controls steering behavior in Caenorhabditis elegans
title_short Persistent thermal input controls steering behavior in Caenorhabditis elegans
title_sort persistent thermal input controls steering behavior in caenorhabditis elegans
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819614/
https://www.ncbi.nlm.nih.gov/pubmed/33417596
http://dx.doi.org/10.1371/journal.pcbi.1007916
work_keys_str_mv AT ikedamuneki persistentthermalinputcontrolssteeringbehaviorincaenorhabditiselegans
AT matsumotohirotaka persistentthermalinputcontrolssteeringbehaviorincaenorhabditiselegans
AT izquierdoeduardoj persistentthermalinputcontrolssteeringbehaviorincaenorhabditiselegans