Cargando…
Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation
Studying the swimming behaviour of bacteria in 3 dimensions (3D) allows us to understand critical biological processes, such as biofilm formation. It is still unclear how near wall swimming behaviour may regulate the initial attachment and biofilm formation. It is challenging to address this as visu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820011/ https://www.ncbi.nlm.nih.gov/pubmed/33479476 http://dx.doi.org/10.1038/s41598-021-81621-w |
_version_ | 1783639119666085888 |
---|---|
author | Khong, Nicole Zi-Jia Zeng, Yukai Lai, Soak-Kuan Koh, Cheng-Gee Liang, Zhao-Xun Chiam, Keng-Hwee Li, Hoi-Yeung |
author_facet | Khong, Nicole Zi-Jia Zeng, Yukai Lai, Soak-Kuan Koh, Cheng-Gee Liang, Zhao-Xun Chiam, Keng-Hwee Li, Hoi-Yeung |
author_sort | Khong, Nicole Zi-Jia |
collection | PubMed |
description | Studying the swimming behaviour of bacteria in 3 dimensions (3D) allows us to understand critical biological processes, such as biofilm formation. It is still unclear how near wall swimming behaviour may regulate the initial attachment and biofilm formation. It is challenging to address this as visualizing the movement of bacteria with reasonable spatial and temporal resolution in a high-throughput manner is technically difficult. Here, we compared the near wall (vertical) swimming behaviour of P. aeruginosa (PAO1) and its mutants ΔdipA (reduced in swarming motility and increased in biofilm formation) and ΔfimX (deficient in twitching motility and reduced in biofilm formation) using our new imaging technique based on light sheet microscopy. We found that P. aeruginosa (PAO1) increases its speed and changes its swimming angle drastically when it gets closer to a wall. In contrast, ΔdipA mutant moves toward the wall with steady speed without changing of swimming angle. The near wall behavior of ΔdipA allows it to be more effective to interact with the wall or wall-attached cells, thus leading to more adhesion events and a larger biofilm volume during initial attachment when compared with PAO1. Furthermore, we found that ΔfimX has a similar near wall swimming behavior as PAO1. However, it has a higher dispersal frequency and smaller biofilm formation when compared with PAO1 which can be explained by its poor twitching motility. Together, we propose that near wall swimming behavior of P. aeruginosa plays an important role in the regulation of initial attachment and biofilm formation. |
format | Online Article Text |
id | pubmed-7820011 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78200112021-01-22 Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation Khong, Nicole Zi-Jia Zeng, Yukai Lai, Soak-Kuan Koh, Cheng-Gee Liang, Zhao-Xun Chiam, Keng-Hwee Li, Hoi-Yeung Sci Rep Article Studying the swimming behaviour of bacteria in 3 dimensions (3D) allows us to understand critical biological processes, such as biofilm formation. It is still unclear how near wall swimming behaviour may regulate the initial attachment and biofilm formation. It is challenging to address this as visualizing the movement of bacteria with reasonable spatial and temporal resolution in a high-throughput manner is technically difficult. Here, we compared the near wall (vertical) swimming behaviour of P. aeruginosa (PAO1) and its mutants ΔdipA (reduced in swarming motility and increased in biofilm formation) and ΔfimX (deficient in twitching motility and reduced in biofilm formation) using our new imaging technique based on light sheet microscopy. We found that P. aeruginosa (PAO1) increases its speed and changes its swimming angle drastically when it gets closer to a wall. In contrast, ΔdipA mutant moves toward the wall with steady speed without changing of swimming angle. The near wall behavior of ΔdipA allows it to be more effective to interact with the wall or wall-attached cells, thus leading to more adhesion events and a larger biofilm volume during initial attachment when compared with PAO1. Furthermore, we found that ΔfimX has a similar near wall swimming behavior as PAO1. However, it has a higher dispersal frequency and smaller biofilm formation when compared with PAO1 which can be explained by its poor twitching motility. Together, we propose that near wall swimming behavior of P. aeruginosa plays an important role in the regulation of initial attachment and biofilm formation. Nature Publishing Group UK 2021-01-21 /pmc/articles/PMC7820011/ /pubmed/33479476 http://dx.doi.org/10.1038/s41598-021-81621-w Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Khong, Nicole Zi-Jia Zeng, Yukai Lai, Soak-Kuan Koh, Cheng-Gee Liang, Zhao-Xun Chiam, Keng-Hwee Li, Hoi-Yeung Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation |
title | Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation |
title_full | Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation |
title_fullStr | Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation |
title_full_unstemmed | Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation |
title_short | Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation |
title_sort | dynamic swimming pattern of pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820011/ https://www.ncbi.nlm.nih.gov/pubmed/33479476 http://dx.doi.org/10.1038/s41598-021-81621-w |
work_keys_str_mv | AT khongnicolezijia dynamicswimmingpatternofpseudomonasaeruginosanearaverticalwallduringinitialattachmentstagesofbiofilmformation AT zengyukai dynamicswimmingpatternofpseudomonasaeruginosanearaverticalwallduringinitialattachmentstagesofbiofilmformation AT laisoakkuan dynamicswimmingpatternofpseudomonasaeruginosanearaverticalwallduringinitialattachmentstagesofbiofilmformation AT kohchenggee dynamicswimmingpatternofpseudomonasaeruginosanearaverticalwallduringinitialattachmentstagesofbiofilmformation AT liangzhaoxun dynamicswimmingpatternofpseudomonasaeruginosanearaverticalwallduringinitialattachmentstagesofbiofilmformation AT chiamkenghwee dynamicswimmingpatternofpseudomonasaeruginosanearaverticalwallduringinitialattachmentstagesofbiofilmformation AT lihoiyeung dynamicswimmingpatternofpseudomonasaeruginosanearaverticalwallduringinitialattachmentstagesofbiofilmformation |