Cargando…
A combined convolutional and recurrent neural network for enhanced glaucoma detection
Glaucoma, a leading cause of blindness, is a multifaceted disease with several patho-physiological features manifesting in single fundus images (e.g., optic nerve cupping) as well as fundus videos (e.g., vascular pulsatility index). Current convolutional neural networks (CNNs) developed to detect gl...
Autores principales: | Gheisari, Soheila, Shariflou, Sahar, Phu, Jack, Kennedy, Paul J., Agar, Ashish, Kalloniatis, Michael, Golzan, S. Mojtaba |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820237/ https://www.ncbi.nlm.nih.gov/pubmed/33479405 http://dx.doi.org/10.1038/s41598-021-81554-4 |
Ejemplares similares
-
Cognitive Performance on the Montreal Cognitive Assessment Test and Retinal Structural and Functional Measures in Glaucoma
por: Bastani Viarsagh, Solmaz, et al.
Publicado: (2022) -
Objective Quantification of Spontaneous Retinal Venous Pulsations Using a Novel Tablet-Based Ophthalmoscope
por: Shariflou, Sahar, et al.
Publicado: (2020) -
Autonomous assessment of spontaneous retinal venous pulsations in fundus videos using a deep learning framework
por: Panahi, Amirhossein, et al.
Publicado: (2023) -
The Frontloading Fields Study (FFS): Detecting Changes in Mean Deviation in Glaucoma Using Multiple Visual Field Tests Per Clinical Visit
por: Phu, Jack, et al.
Publicado: (2021) -
Convolutional Deep Belief Network with Feature Encoding for Classification of Neuroblastoma Histological Images
por: Gheisari, Soheila, et al.
Publicado: (2018)