Cargando…
Stress testing reveals gaps in clinic readiness of image-based diagnostic artificial intelligence models
Artificial intelligence models match or exceed dermatologists in melanoma image classification. Less is known about their robustness against real-world variations, and clinicians may incorrectly assume that a model with an acceptable area under the receiver operating characteristic curve or related...
Autores principales: | Young, Albert T., Fernandez, Kristen, Pfau, Jacob, Reddy, Rasika, Cao, Nhat Anh, von Franque, Max Y., Johal, Arjun, Wu, Benjamin V., Wu, Rachel R., Chen, Jennifer Y., Fadadu, Raj P., Vasquez, Juan A., Tam, Andrew, Keiser, Michael J., Wei, Maria L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820258/ https://www.ncbi.nlm.nih.gov/pubmed/33479460 http://dx.doi.org/10.1038/s41746-020-00380-6 |
Ejemplares similares
-
Artificial intelligence in medical education: Are we ready for it?
por: Imran, Nazish, et al.
Publicado: (2020) -
“Artificial Intelligence” for Pharmacovigilance: Ready for Prime Time?
por: Ball, Robert, et al.
Publicado: (2022) -
Big data and artificial intelligence - Tools to be future ready?
por: Joshi, Shrinivas, et al.
Publicado: (2021) -
Are we ready for artificial intelligence health monitoring in elder care?
por: Ho, Anita
Publicado: (2020) -
Artificial intelligence in the medical profession: ready or not, here AI comes
por: Pucchio, Aidan, et al.
Publicado: (2022)