Cargando…
Deep learning based prediction of extraction difficulty for mandibular third molars
This paper proposes a convolutional neural network (CNN)-based deep learning model for predicting the difficulty of extracting a mandibular third molar using a panoramic radiographic image. The applied dataset includes a total of 1053 mandibular third molars from 600 preoperative panoramic radiograp...
Autores principales: | Yoo, Jeong-Hun, Yeom, Han-Gyeol, Shin, WooSang, Yun, Jong Pil, Lee, Jong Hyun, Jeong, Seung Hyun, Lim, Hun Jun, Lee, Jun, Kim, Bong Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820274/ https://www.ncbi.nlm.nih.gov/pubmed/33479379 http://dx.doi.org/10.1038/s41598-021-81449-4 |
Ejemplares similares
-
Deep Learning-Based Prediction of Paresthesia after Third Molar Extraction: A Preliminary Study
por: Kim, Byung Su, et al.
Publicado: (2021) -
Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs
por: Jeong, Seung Hyun, et al.
Publicado: (2020) -
Deep learning based prediction of necessity for orthognathic surgery of skeletal malocclusion using cephalogram in Korean individuals
por: Shin, WooSang, et al.
Publicado: (2021) -
Three-Dimensional Postoperative Results Prediction for Orthognathic Surgery through Deep Learning-Based Alignment Network
por: Jeong, Seung Hyun, et al.
Publicado: (2022) -
Development and validation of a difficulty index for mandibular third molars with extraction time
por: Ku, Jeong-Kui, et al.
Publicado: (2020)