Cargando…
MVP predicts the pathogenicity of missense variants by deep learning
Accurate pathogenicity prediction of missense variants is critically important in genetic studies and clinical diagnosis. Previously published prediction methods have facilitated the interpretation of missense variants but have limited performance. Here, we describe MVP (Missense Variant Pathogenici...
Autores principales: | Qi, Hongjian, Zhang, Haicang, Zhao, Yige, Chen, Chen, Long, John J., Chung, Wendy K., Guan, Yongtao, Shen, Yufeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820281/ https://www.ncbi.nlm.nih.gov/pubmed/33479230 http://dx.doi.org/10.1038/s41467-020-20847-0 |
Ejemplares similares
-
Template-based prediction of protein structure with deep learning
por: Zhang, Haicang, et al.
Publicado: (2020) -
SQL Server MVP deep dives
por: Nielsen, Paul
Publicado: (2010) -
SQL Server MVP deep dives.
por: Delaney, Kalen, et al.
Publicado: (2012) -
LYRUS: a machine learning model for predicting the pathogenicity of missense variants
por: Lai, Jiaying, et al.
Publicado: (2021) -
MVP: a microbe–phage interaction database
por: Gao, Na L, et al.
Publicado: (2018)