Cargando…
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors
To understand impact of input and output parameters during optimization and degree of complexity, in the current study we numerically designed a bubble column reactor with a single sparger in the middle of the reactor. After that, some input and output parameters were selected in the post-processing...
Autores principales: | Pelalak, Rasool, Nakhjiri, Ali Taghvaie, Marjani, Azam, Rezakazemi, Mashallah, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820399/ https://www.ncbi.nlm.nih.gov/pubmed/33479358 http://dx.doi.org/10.1038/s41598-021-81514-y |
Ejemplares similares
-
Functional input and membership characteristics in the accuracy of machine learning approach for estimation of multiphase flow
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Mechanistic modeling and numerical simulation of axial flow catalytic reactor for naphtha reforming unit
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS)
por: Babanezhad, Meisam, et al.
Publicado: (2020)