Cargando…
Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images
Recurrence risk stratification of patients undergoing primary surgical resection for hepatocellular carcinoma (HCC) is an area of active investigation, and several staging systems have been proposed to optimize treatment strategies. However, as many as 70% of patients still experience tumor recurren...
Autores principales: | Yamashita, Rikiya, Long, Jin, Saleem, Atif, Rubin, Daniel L., Shen, Jeanne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820423/ https://www.ncbi.nlm.nih.gov/pubmed/33479370 http://dx.doi.org/10.1038/s41598-021-81506-y |
Ejemplares similares
-
IL-11 drives postsurgical hepatocellular carcinoma recurrence
por: Lauko, Adam, et al.
Publicado: (2019) -
Deep learning‐based classification and mutation prediction from histopathological images of hepatocellular carcinoma
por: Liao, Haotian, et al.
Publicado: (2020) -
Squamous Cell Carcinoma of Skin Cancer Margin Classification From Digital Histopathology Images Using Deep Learning
por: Wako, Beshatu Debela, et al.
Publicado: (2022) -
Predicting the recurrence and overall survival of patients with glioma based on histopathological images using deep learning
por: Luo, Chenhua, et al.
Publicado: (2023) -
Differentiation of urothelial carcinoma in histopathology images using deep learning and visualization
por: Mundhada, Aniruddha, et al.
Publicado: (2022)