Cargando…
On the stiffness of surfaces with non-Gaussian height distribution
In this work, the stiffness, i.e., the derivative of the load-separation curve, is studied for self-affine fractal surfaces with non-Gaussian height distribution. In particular, the heights of the surfaces are assumed to follow a Weibull distribution. We find that a linear relation between stiffness...
Autores principales: | Pérez-Ràfols, Francesc, Almqvist, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820461/ https://www.ncbi.nlm.nih.gov/pubmed/33479254 http://dx.doi.org/10.1038/s41598-021-81259-8 |
Ejemplares similares
-
A stochastic two-scale model for pressure-driven flow between rough surfaces
por: Pérez-Ràfols, Francesc, et al.
Publicado: (2016) -
Financial modeling under non-gaussian distributions
por: Jondeau, Eric, et al.
Publicado: (2007) -
On compressible and piezo-viscous flow in thin porous media
por: Pérez-Ràfols, F., et al.
Publicado: (2018) -
Stiffness estimation of planar spiral spring based on Gaussian process regression
por: Liu, Jingjing, et al.
Publicado: (2022) -
Infinite-dimensional Gaussian distributions
por: Rozanov, Yu A
Publicado: (1971)