Cargando…
Remarkable enhancement of thermal stability of epoxy resin through the incorporation of mesoporous silica micro-filler
For the first time, we incorporated mesoporous micro-silica (5 μm, pore size = 50 nm) as a filler in epoxy resin aiming to enter polymer into the pore of the silica. As expected, the thermal stability of the composite increased remarkably, followed by noteworthy thermal degradation kinetics when com...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820568/ https://www.ncbi.nlm.nih.gov/pubmed/33521354 http://dx.doi.org/10.1016/j.heliyon.2021.e05959 |
Sumario: | For the first time, we incorporated mesoporous micro-silica (5 μm, pore size = 50 nm) as a filler in epoxy resin aiming to enter polymer into the pore of the silica. As expected, the thermal stability of the composite increased remarkably, followed by noteworthy thermal degradation kinetics when compared to the controlled cured epoxy resin. Composites were prepared by the direct dispersion of modified nano-silica, modified mesoporous micro-silica, unmodified mesoporous micro-silica, non-porous micro-silica, and irregular micro-silica of various pore sizes as fillers in diglycidyl ether of bisphenol-A epoxy resin via ultra-sonication and shear mixing, followed by oven-curing with 4,4-diaminodiphenyl sulfone. DSC and TGA analyses demonstrated a higher glass transition temperature (increased by 3.65–5.75 °C) and very high activation energy for thermal degradation (average increase = 46.2%) was obtained for the same unmodified silica composite compared to pure epoxy, respectively. |
---|