Cargando…
Asthma-prone areas modeling using a machine learning model
Nowadays, owing to population growth, increasing environmental pollution, and lifestyle changes, the number of asthmatics has significantly increased. Therefore, the purpose of our study was to determine the asthma-prone areas in Tehran, Iran considering environmental, spatial factors. Initially, we...
Autores principales: | Razavi-Termeh, Seyed Vahid, Sadeghi-Niaraki, Abolghasem, Choi, Soo-Mi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820586/ https://www.ncbi.nlm.nih.gov/pubmed/33479275 http://dx.doi.org/10.1038/s41598-021-81147-1 |
Ejemplares similares
-
COVID-19 Risk Mapping with Considering Socio-Economic Criteria Using Machine Learning Algorithms
por: Razavi-Termeh, Seyed Vahid, et al.
Publicado: (2021) -
Coronavirus disease vulnerability map using a geographic information system (GIS) from 16 April to 16 May 2020
por: Razavi-Termeh, Seyed Vahid, et al.
Publicado: (2022) -
Spatial modeling of long-term air temperatures for sustainability: evolutionary fuzzy approach and neuro-fuzzy methods
por: Sadeghi-Niaraki, Abolghasem, et al.
Publicado: (2020) -
A Survey of Marker-Less Tracking and Registration Techniques for Health & Environmental Applications to Augmented Reality and Ubiquitous Geospatial Information Systems
por: Sadeghi-Niaraki, Abolghasem, et al.
Publicado: (2020) -
Enhancing response coordination through the assessment of response network structural dynamics
por: Abbasi, Alireza, et al.
Publicado: (2018)