Cargando…
Machine learning approaches and databases for prediction of drug–target interaction: a survey paper
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interacti...
Autores principales: | Bagherian, Maryam, Sabeti, Elyas, Wang, Kai, Sartor, Maureen A, Nikolovska-Coleska, Zaneta, Najarian, Kayvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820849/ https://www.ncbi.nlm.nih.gov/pubmed/31950972 http://dx.doi.org/10.1093/bib/bbz157 |
Ejemplares similares
-
Erratum to: Machine learning approaches and databases for prediction of drug–target interaction: a survey paper
por: Bagherian, Maryam, et al.
Publicado: (2020) -
Coupled matrix–matrix and coupled tensor–matrix completion methods for predicting drug–target interactions
por: Bagherian, Maryam, et al.
Publicado: (2020) -
Learning Using Concave and Convex Kernels: Applications in Predicting Quality of Sleep and Level of Fatigue in Fibromyalgia
por: Sabeti, Elyas, et al.
Publicado: (2019) -
Signal quality measure for pulsatile physiological signals using morphological features: Applications in reliability measure for pulse oximetry
por: Sabeti, Elyas, et al.
Publicado: (2019) -
Optimization and validation of mitochondria-based functional assay as a useful tool to identify BH3-like molecules selectively targeting anti-apoptotic Bcl-2 proteins
por: Long, Jianting, et al.
Publicado: (2013)